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1. INTRODUCTION

Optimal foraging theory (MacArthur and Pianka,
1966; Emlen, 1966; Schoener, 1971; Pulliam, 1974;
Werner and Hall, 1974; Charnov, 1976; Stephens and
Krebs, 1986; Schmitz, 1997) aims to explain diet composi-
tion of animals from a behavioural perspective. It assumes
that foraging behaviour plays a considerable role in
predator fitness and, in its classic formulation, that this
fitness is proportional to the average rate of net energy
gain during foraging. In fine-grained environments, one
important prediction is the so called ``zero�one rule'': a
prey type should be either always attacked or always
ignored upon encounter with a predator.

In experiments on diet composition by consumers,
however, partial preferences for prey are typically observed;
that is, a prey type is sometimes attacked and sometimes
ignored when encountered (Werner and Hall, 1974;
Davies, 1977; Goss-Custard, 1977; Krebs et al., 1977;
Mittelbach, 1981; Rechten et al., 1983; Jones, 1990).
Partial preferences may be seen by instantly observing
food decisions of a group of predators (partial preferences
of a population of individuals) and�or by observing a
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single predator's behaviour in a series of its food decisions
(partial preferences of individuals). Various mechanisms
have been proposed to explain partial preferences within
the energy rate maximization models. They range from
incorrect classification of prey and sampling by predators
(Krebs et al., 1977; Rechten et al., 1983), through prey
crypsis (Erichsen et al., 1980), estimation of encounter
rates with prey by predators (McNamara and Houston,
1987; Hirvonen et al., 1999), to a limited memory
capacity of predators (Mangel and Roitberg, 1989;
Be� lisle and Cresswell, 1997); see McNamara and
Houston (1987), Mitchell (1989), and Be� lisle and
Cresswell (1997) for more detailed lists.

The classic prey optimal foraging model (Pulliam,
1974; Werner and Hall, 1974; Charnov, 1976) assumes,
among other things, that predators are omniscient; that
is, they have exact knowledge of prey densities in the
environment at each time instant, a feature that is
quite unrealistic. McNamara and Houston (1987) and
Hirvonen et al. (1999) replaced this assumption by the
ability of predators to estimate prey densities from the
actual prey encounter histories of individual predators.
Mangel and Roitberg (1989) addressed the issue of par-
tial preferences in the host�parasite framework and
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assumed that parasites assessed the densities of
parasitized and unparasitized hosts by the time since last
oviposition and the fraction of parasitized hosts in a
number of previous encounters. In this article, we replace
the assumption of predator omniscience by a weaker
assumption of local omniscience: we suppose that any
predator has exact knowledge of prey densities only in an
immediate neighbourhood of its spatial location. This
local omniscience can be due to perceptual limitations of
predators, e.g., a limited detection range of pheromones
released by prey, or limited visual or auditory ranges of
predators (Rice, 1983; Kindvall et al., 1998); it results in
partial preferences for which an analytical formula can be
derived. The change from the zero�one rule to partial
preferences is rather important from the viewpoint of
population dynamics because it modifies the predator
functional response which, in turn, may have a strong
impact on dynamical properties of the one-predator two-
prey system (Fryxell and Lundberg, 1994; Kr� ivan, 1996;
Kr� ivan and Sikder, 1999).

In the following section we formulate a spatially
explicit individual-based model (IBM) of predators
foraging on two prey types, using the methodology intro-
duced by de Roos et al. (1991), McCauley et al. (1993),
and Wilson et al. (1993). We then re-derive the classic
prey choice rule in the IBM framework and derive a new
prey choice rule incorporating a mechanism of limited
perception by predators. The main advantage of the
spatially explicit individual-based approach is that the
model tracks every single individual's location in the
environment, thus enabling us to define perception
neighbourhoods readily for individual predators. We
show that under such perceptual limitations, the classic
zero�one rule describing the foraging strategy of
predators for less profitable prey shifts to a gradually
decreasing function, giving way to partial preferences.

2. MODEL

We begin with a formulation of a spatially explicit,
one-predator two-prey, individual-based model, using
the methodology introduced by de Roos et al. (1991),
McCauley et al. (1993), and Wilson et al. (1993). The
spatially homogeneous environment is modelled as a lat-
tice of square sites. Population abundances are limited by
the lattice size as we allow at most one prey individual
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(regardless of its type) and one predator individual to
occupy any single site. Let time run in discrete steps. We
assume that the numbers of prey 1 individuals (x1), prey
2 individuals (x2), and predators ( y) do not change with
time. This is the standard assumption ``when we want to
look at the instantaneous behaviour under a range of
conditions'' (Murdoch and Oaten, 1975). Moreover, we
assume that prey are randomly distributed on the lattice
at each time step, respecting the above constraint.

At each time step, the lattice sites are updated
simultaneously according to the following rules. We
assume that any predator is either searching for prey or
handling prey. At the beginning of each time step any
single predator may find itself in one of three situations:
it can share the lattice site with a prey 1 individual or
with a prey 2 individual or the site can be free of prey. For
either of the first two cases, predator behaviour with
respect to attacking prey has to be specified: if the
predator encounters (i.e., shares the site with) a prey
i=1, 2 individual, it decides to attack that prey with a
probability pi , which may vary with time. If the predator
decides to attack the prey i individual, the attack is suc-
cessful with a probability P i

a . Following a successful
attack, the predator handles prey i for T i

h time steps. The
handled prey cannot be attacked by another predator.
When handling a prey item, the predator can neither
attack another prey individual nor move. There is no
interference between predators in our model.

Before we address optimal foraging issues, we derive
the predator diet composition and functional response
induced by the individual-based model just defined. Con-
sider a single predator in a sufficiently large series of food
decisions. The fraction of prey i individuals from all prey
it captures in the series can be well approximated by the
formula

xi

S
pi P i

a<\x1

S
p1P1

a+
x2

S
p2 P2

a+ , (1)

where S is the number of lattice sites; see Appendix for a
detailed derivation. The predator functional response to
prey i, defined here as the number of captured prey i
individuals per predator per time step, can be anal-
ogously shown to approach

ys

xi

S
pi P i

a<y (2)

with the number of food decisions, where ys the mean
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number of searching predators and y the total (fixed)
number of predators. Following Wilson (1998), the
ratio ys�y can be approximated sufficiently by the expres-
sion 1�(1+T 1

h
x1
S p1P1

a+T 2
h

x2
S p2P2

a). The (approximate)



predator functional response to prey i=1, 2 thus turns
out to be

xi

S
p iPi

a

1+T 1
h

x1

S
p1P1

a+T 2
h

x2

S
p2P2

a

. (3)

We note that the expressions (1) and (3) can also be
derived from the point of view of a number of predators
considered in a single time step; see Appendix. In the
following section, plausible values for the decision
probabilities pi are derived.

3. OPTIMAL FORAGING

For two prey types, the classic prey optimal foraging
model (Pulliam, 1974; Werner and Hall, 1974; Charnov,
1976) predicts that more profitable prey should always
be attacked by predators upon encounter. Less profitable
prey should be attacked upon each encounter, provided
that the density of more profitable prey is below a certain
threshold density. Above this threshold density, less
profitable prey should be completely excluded from the
predator optimal diet. This result was termed the
``zero�one rule'' by Stephens and Krebs (1986) and the
``none-or-all'' rule by McNamara and Houston (1987).
In this section, we first re-derive this rule in the adopted
IBM framework. We then derive a new prey choice rule
that stems from the assumption that predators are able to
perceive prey numbers only locally.

Exact Knowledge by Predators

According to evolutionary biology, every individual is
supposed to maximize its fitness. Classic optimal forag-
ing theory assumes that the fitness of predators is propor-
tional to the average rate of net energy gain during
foraging,

E
Ts+Th

, (4)

where Ts is, in the context of our IBM formulation, the
number of time steps spent searching, Th stands for the
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number of time steps spent handling prey items, and E is
the net amount of energy gained by the predator during
the total foraging time Ts+Th . Given the stochastic
character of the IBM, the rate (4) is clearly a random
variable. For a sufficiently large number of consumed
prey items (hence large foraging time) and a sufficiently
large lattice size, the mean value of (4) approaches

R( p1 , p2)=
E1

x1

S
p1P1

a+E2

x2

S
p2P2

a

1+T 1
h

x1

S
p1P1

a+T 2
h

x2

S
p2P2

a

, (5)

whereas its variance tends to zero (Stephens and
Charnov, 1982; Stephens and Krebs, 1986). Ei is the net
amount of energy predators gain from ingesting one prey
i=1, 2 item. Therefore, we adopt the function (5) as the
quantity predators tend to maximize with respect to the
decision probabilities p1 and p2 . Assuming that prey 1 is
more profitable than prey 2 (that is, E1�T 1

h>E2 �T 2
h), the

optimal strategy of a predator is to always attack prey 1
upon encounter ( p1=1), independent of prey 1 and prey
2 population numbers, and to decide as

p2 (x1)={1 if x1<L1 ,
0 if x1>L1

(6)

upon encounter with prey 2, where

L1=S
E2

P1
a(E1 T 2

h&E2T 1
h)

; (7)

see Stephens and Krebs (1986) or Kr� ivan (1996) for a
detailed derivation. The case x1=L1 is not considered
here as the prey 1 abundance x1 can take only integer
values within the IBM framework, limited by 0 from
below and by the lattice size S from above; consequently,
we can always make the threshold value L1 different from
all the admissible values of x1 by a negligible change in
model parameters. (Within the framework of ordinary
differential equations, however, population densities may
acquire any non-negative real value and such a case has
to be treated properly (Kr� ivan, 1996).)

The effects of the above optimal foraging strategy on
the predator diet composition and functional response
are shown in Fig. 1. Figure 1A plots the prey 1 fraction in
the diet [Eq. (1)] for optimally foraging predators (that
is, with p1=1 and p2 specified by (6)) against the prey 1
population abundance x1 , Fig. 1B plots the same quan-
tity against the fraction of prey 1 in the environment, and
Fig. 1C plots the predator functional response to prey 1
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[Eq. (3)] for optimally foraging predators against the
prey 1 population abundance x1 . All these dependences
are inspected for several fixed values of x2 . Three obser-
vations are worth noting. First, both the prey 1 fraction



FIG. 1. The fraction of prey 1 individuals from all prey captured by
the optimally foraging predators in a single time step (or by a single
predator in a series of its food decisions) against the prey population
abundances (Fig. 1A), the same quantity plotted against the fraction of
prey 1 in the environment and prey 2 numbers (Fig. 1B), and the
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predator functional response of optimally foraging predators to prey 1
(the mean number of successfully attacked prey 1 individuals per
predator per time step) against the number of prey in the environment
(Fig. 1C). The parameter values: S=16384(128_128), P1

a=0.2,
E1=0.06, T 1

h=5, P2
a=0.42, E2=0.05, T 2

h=12.
in the predator diet and the prey 1 consumption rate
increase with prey 1 abundance but decrease with prey 2
abundance. Moreover, the abrupt changes of these quan-
tities appear around the prey 1 threshold abundance L1

where the predator diet is modified. Finally, magnitudes
of these abrupt changes increase with increasing prey 2
population abundance x2 .

Figure 2 compares the predator diet composition and
functional response curves with an IBM simulation for a
constant prey 2 density. The vertical dotted lines mark
locations of the threshold value L1 . The circles, i.e., the
simulation results, were obtained by counting and pro-
cessing analogously the actual numbers of successfully
attacked prey i=1, 2 individuals, for various values of
prey 1 abundance. More rigorously, 100 time steps were
simulated for each prey 1 abundance (prey 2 numbers
were kept constant across these simulations) and the
numbers of successfully attacked prey in the last time
step, when the number of searching predators had
relatively stabilized, were processed. One may notice a
close fit of the stochastic simulation results by the
approximate deterministic formulae (1) and (3). For a
comparison, the dotted oblique line in Fig. 2B indicates
behaviour of an opportunistic predator, consuming prey
items at the ratio of their environmental numbers. We see
that the predator consumes disproportionately more
prey 2 items below the prey 1 abundance x1=L1 , due to
higher probability P2

a>P1
a used in the figure to success-

fully attack prey 2 upon encounter. The prey 1 fraction in
the diet would coincide with the oblique line below L1 for
P1

a=P2
a .

For omniscient predators having exact knowledge of
prey 1 abundance over the entire lattice at each time
instant, partial preferences appear neither on the
individual level nor on the population level. The decision
probabilities pi of individual predators follow the
zero�one rule; that is, a prey type is either always
attacked or always ignored upon encounter, and all
predators change their diet synchronously. The latter
observation is reflected in the above figures in the abrupt
changes around the prey 1 threshold abundance L1 . This
synchrony and the assumption of predator omniscience
(particularly in large habitats) do not seem entirely
realistic. In the rest of this section we consider the situa-
tion where predators have only a limited knowledge of
their environment.

Berec and Kr� ivan
Limited Perception by Predators

McNamara and Houston (1987) and Hirvonen et al.
(1999) explained partial preferences by letting predators



FIG. 2. A projection of the dependencies plotted in Fig. 1 when the
prey 2 population abundance is fixed at the value x2=3000. The circles
represent the IBM simulation results when prey are randomly dis-
tributed on the lattice at each time step, the solid line is the theoretical
prediction. The vertical dotted lines mark locations of the prey 1
threshold value L1 . The parameter values are the same as in Fig. 1,
y=6000. All the predators were initially in the searching state. For each
fixed prey 1 density x1 , simulation was running for 100 time steps, and
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the actual numbers of successfully attacked prey i individuals in the last
time step were processed appropriately to get dependencies drawn in
Fig. 1. The dotted oblique line in Fig. 2B indicates behaviour of an
opportunistic predator, consuming prey types at the ratio of their
environmental numbers.
estimate prey densities on the basis of actual encounters
with prey. This is one possible approach to incorporating
a limited knowledge of the environment by predators.
We envisage another approach here. We suppose that
predators know the exact numbers of individuals of each
prey type, but only within a restricted neighbourhood of
their respective spatial locations (for example, a square of
5_5 lattice sites with the predator in its center), rather
than within the environment as a whole. We motivate
this idea by a limited detection range of volatile sub-
stances released by prey, or limited predator visual or
auditory ranges (Rice, 1983; Kindvall et al., 1998).

Let the perception neighbourhood have the same
number N of sites for every predator individual; we refer
to it as an N-neighbourhood further on. Let individuals
of both prey be randomly distributed on the lattice at
each time step. This assumption implies, among other
things, that the actual form of the N-neighbourhood is
not important and may vary with different predators,
because the probability that a site is occupied by a prey
i item is the same for each site. The question of interest is
how a predator should decide upon encounter with prey
if it perceives x~ i prey i items in its N-neighbourhood.
Obviously, these numbers vary as the predator and�or
prey move. However, since the predator does not know
the total prey abundance xi , it cannot assess variability
in these numbers and optimize its behaviour with respect
to this variability. We adopt the approach that is com-
mon when dynamic consequences of foraging strategies
are inspected (Gleeson and Wilson, 1986; Fryxell and
Lundberg, 1994; Kr� ivan, 1996): instantaneous�static
predator behaviour is first derived for a range of condi-
tions and then put into the changing environment. Let us
suppose for a moment that the prey i number x~ i does not
vary in the N-neighbourhood of the predator. If we con-
sider this neighbourhood as the effective environment of
the predator, then the above derived optimal foraging
rule predicts that the predator should always attack prey
1 upon encounter ( p1=1), whereas its decision to attack
prey 2 upon encounter depends on the relation between
the local abundance x~ 1 of prey 1 within the N-neigh-
bourhood and the local threshold abundance

L$1=N
E2

P1
a(E1 T 2

h&E2T 1
h)

, (8)

that is, the threshold abundance (7) with the size S of the
whole environment replaced by the size N of the effective
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environment. The predator should attack prey 2
provided that x~ 1<L$1 and ignore it when x~ 1>L$1 . Note
that L$1 �N=L1 �S: the threshold densities do not change
with the transition from the global to a local scale.



Now, we put this strategy into a changing environ-
ment. As mentioned above, the local prey 1 abundance x~ 1

need not be the same for every predator individual nor
for the same individual under different spatial prey dis-
tributions (which may arise due to prey and�or predator
movement). We show that this spatial variability in x~ 1

gives rise to partial preferences on both the individual
and population levels. Let a single predator individual
share a site with a prey 2 individual. Obviously, the deci-
sion probability p2 that the predator will attack that prey
item equals the probability that the number of prey 1
individuals x~ 1 in the N-neighbourhood of this predator is
less than the threshold value L$1 . Given 0<xi<S prey
i=1, 2 items (x1+x2�S), there are

Dtotal=\S&1
x1 +\S&1&x1

x2&1 + (9)

possibilities for the distribution of prey on the lattice,
provided that the focus site is occupied by a prey 2
individual and the predator. The number of possibilities
by which x~ 1 prey 1 individuals can be located in the
N-neighbourhood is

Dadmissible (x~ 1)=\ S&N
x1&x~ 1+\

N&1
x~ 1 +\S&1&x1

x2&1 + , (10)

provided that this expression is defined, i.e., that max(0,
x1&S+N)�x~ 1�min(x1 , N&1) and Dadmissible (x~ 1)=0
otherwise. Hence, the probability that the number of
more profitable prey individuals in the neighbourhood of
size N is lower than the threshold value L$1 is

p2 (x1)= :
[L$1]

x~ 1=0

Dadmissible (x~ 1)
Dtotal

, (11)

where [L$1] denotes the largest integer less than L$1 . Note
that the probability (11) does not depend on the prey 2
abundance x2 , as the respective terms in the expressions
(9) and (10) cancel out. Figure 3 shows the decision
probability p2 as a function of prey 1 abundance x1 . The
zero�one step function derived for the omniscient
predators (dotted line) changes to a gradually decreasing
sigmoid-like function (solid line). Therefore, 0<p2 (x1)
<1 for a range of prey 1 numbers. As N approaches S,
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the decision probability (11) approaches the zero�one
step function. Indeed, for N = S it is L$1 = L1 , and
Dadmissible(x~ 1)=0 for any x~ 1 {x1 . This implies p2 (x1)=1
if x1<L1 and p2 (x1)=0 if x1>L1 , that is, the formula (6).
FIG. 3. The decision probability p2 , as a function of the prey 1
population abundance x1 , for globally omniscient predators (dotted
line) and locally omniscient predators (solid line). The parameter
values are the same as in Fig. 1, x2=3000, N=49(7_7).

We claim that the decision probability p2 given by the
expression (11) gives rise to partial preferences on both
the individual and population levels, for a wide range of
prey 1 population abundances�densities. To see the for-
mer, consider a single predator in the course of time and
observe its food decisions. As x1 is kept constant, after m
encounters with prey 2, the number of prey 2 items it has
actually consumed is binomially distributed with
parameters m and p2 (x1). Hence, the mean fraction of
prey 2 items the predator has consumed is p2 (x1), which
is neither 0 nor 1 for x1 such that 0<p2 (x1)<1. The
actual fraction of prey 2 items the predator has consumed
after m encounters with prey 2 approaches p2 (x1) as m
(that is, number of food decisions) tends to infinity. To
elucidate the existence of partial preferences on the pop-
ulation level, consider a fixed time step and a number of
predators on the lattice. Let m out of a number of search-
ing predators encounter a prey 2 item in that time step.
Then the actual number of predators that attack prey 2
is also binomially distributed with parameters m and
p2 (x1). Hence, the mean fraction of predators that have
both encountered and attacked prey 2 is p2 (x1), whereas
the actual fraction of these predators approaches p2 (x1)
as m (that is, prey and predator numbers and, in turn,
lattice size) tends to infinity.

Berec and Kr� ivan
Figures 4 and 5 are analogous to Figs. 1 and 2. They
show the effects of perceptual limitations of predators on
their diet composition [Eq. (1)] and functional response
to prey 1 [Eq. (3)], for p1=1 and p2 specified by the



FIG. 4. The fraction of prey 1 individuals from all prey captured by
the optimally foraging predators in a single time step (or by a single
predator in a series of its food decisions) against the prey population
abundances (Fig. 4A), the same quantity plotted against the fraction of
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prey 1 in the environment and prey 2 numbers (Fig. 4B), and the
predator functional response of optimally foraging predators to prey 1
(the mean number of successfully attacked prey 1 individuals per
predator per time step) against the number of prey in the environment
(Fig. 4C). The parameter values are the same as in Fig. 1, N=49.
FIG. 5. A projection of the dependencies plotted in Fig. 4 when the
prey 2 population abundance is fixed at the value x2=3000. The circles
represent the IBM simulation results when prey are randomly dis-
tributed on the lattice at each time step, the solid line is the theoretical
prediction. The vertical dotted lines mark locations of the prey 1
threshold value L1 . The parameter values are the same as in Fig. 1,
N=49, y=6000. All the predators were initially in the searching state.
For each fixed prey 1 density x1 , simulation was running for 100 time
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steps, and the actual numbers of successfully attacked prey i individuals
in the last time step were processed appropriately to get dependencies
drawn in Fig. 4. The dotted oblique line in Fig. 5B indicates behaviour
of an opportunistic predator, consuming prey types at the ratio of their
environmental numbers.



formula (11). The fundamental distinction in these cha-
racteristics between globally and locally omniscient
predators is the shift from the abrupt changes around the
threshold abundance L1 (Figs. 1 and 2) to the gradual
transitions over this threshold value for predators with
perceptual limitations (Figs. 4 and 5). As a consequence,
the predator functional response to prey 1 takes a
sigmoidal form (Figs. 4C and 5C) which may have
implications for dynamics of the whole predator�prey
system.

4. DISCUSSION

Limited Perception

In this article we have constructed and analyzed a spa-
tially explicit individual-based model for one predator
population feeding on two prey types. The majority of
optimal diet models (Schoener, 1971; Pulliam, 1974;
Werner and Hall, 1974; Charnov, 1976) assume random
sequential encounters with prey and omniscient predators.
This means that consumers have exact knowledge of
their environment, and it results in simultaneous
change of their diet at a certain threshold density of more
profitable prey. Below this threshold all prey items should
be attacked upon encounter with any searching predator,
whereas above the threshold this strategy should be
applied to more profitable prey only. The lack of variation
between individual consumers thus leads to the zero�one
preference for the less profitable prey type.

Whether animals are omniscient or not may depend on
the spatial scale. On the scale which corresponds to the
range of animal perception, the assumption on omni-
science is reasonable. As the habitat in which animals live
increases in size, they become less omniscient. Due to a
variation in prey distribution across the environment,
individual predators will face different prey densities in
their respective perception ranges. Although all predators
still change their diet at the same threshold abundance of
more profitable prey given by formula (8), this change is
no longer synchronized.

The variation in prey densities and local omniscience
combine and lead to partial preferences analytically
described by formula (11). This formula can be inter-
preted both from individual consumer and population
viewpoints. If we observe a single predator during a series
of its food decisions, each time it encounters less
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profitable prey the predator attacks or ignores that prey
depending on the number of more profitable prey items
it perceives. As the predator and�or prey move, the local
prey density changes and the fraction of attacked
individuals of less profitable prey approaches the prob-
ability (11) with increasing number of decisions,
provided that the total prey densities do not change.
Alternatively, we may observe more predators at a single
time step. For a range of more profitable prey densities,
some of the predators experience higher prey 1 local
abundance than the threshold value (8), whereas some
experience lower abundance. In turn, the fraction of
predators that attack less profitable prey of those
encountering it approaches the probability (11) with
increasing number of encounters (that is, prey and
predators and, in turn, the lattice size).

Another mechanism accounting for an incomplete
knowledge of predators on prey densities was presented
by McNamara and Houston (1987) and Hirvonen et al.
(1999). They assumed that predators perceive their
environment through encounters with prey, and derived
an analytical expression for partial preferences which is
based on the assumption that more recent encounters
have a higher weight. The partial preferences that appear
are due to a variation in estimates of the encounter rate
with more profitable prey, and can also be interpreted
in terms of a single individual or a population of
individuals, Mangel and Roitberg (1989) explored par-
tial preferences in a host�parasite framework, through a
variation in parasite memory and the time since last
oviposition. Both these examples and our work replace
the assumption of predator�parasite omniscience by a
weaker one, and derive partial preferences within the
classic optimal foraging framework. Yet they differ in the
particular mechanisms they propose as omniscience
substitutes.

Partial Preferences

There seems to be an ambiguity in understanding the
concept of partial preferences on the individual level.
McNamara and Houston (1987) state that contrary to
optimality models in which ``the same behaviour is
always followed in given circumstances, partial prefer-
ences mean that in given circumstances a prey type is
sometimes taken and sometimes rejected.'' This may be
seen either by instantly observing food decisions of a group
of predators (population level) or by observing a single
predator in a series of its food decisions (individual level).
We claim that the issue of whether partial preferences
appear on the individual level or not is strongly influenced
by what we consider to be the ``circumstances.'' Before we
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discuss this issue more thoroughly in the next para-
graphs, we note that partial preferences may be observed
on the population level but not on the individual level,
and vice versa. The former may be the case, for example,



when predators know prey densities exactly but form two
groups, each having different assessment of Ei and�or T i

h

(increase in experience or body size may, for example,
reduce handling times and�or increase energetic efficiency
of consuming prey). The latter may happen, for example,
when all predators are identical and exactly know prey
densities, but the threshold value at which predators
change their diet varies with time.

Let us define a ``predator decision state'' as a set of
variables that the predator uses as a basis for its deci-
sions. It may generally involve such information as
predator knowledge of prey profitabilities and encounter
rates and predator physiological or motivational state
(satiation level, prey type consumed last, time of day,
etc.). Any value of the predator decision state can be
understood as a circumstance in the above sense. Many
suggested mechanisms leading to partial preferences are
intrinsically deterministic; that is, the predator decision
state space is split into two parts, one prescribing always
ignoring an encountered prey type and the other always
attacking it (the ``individual'' zero�one rule). Hence,
under given circumstances, such predators decide con-
sistently (always attack prey or always ignore it) and
partial preferences do not appear on the individual level.
In this conceptual context, classic predators decide
according to the state [Ei , T i

h , x i]. On the other hand,
the locally omniscient predators of this article use the
state [Ei , T i

h , x~ i], where x~ i is the prey i local abundance,
whereas McNamara and Houston's predators use the
state [Ei , T i

h , x̂ i], where x̂ i is the estimate of global prey
i abundance. The predator decision state can be defined
for any model with a deterministic decision policy (see
McNamara and Houston (1987) for more examples of
deterministic decision policies which even need not be
optimal at all).

Let us also define an ``experimenter state'' as a set of
variables with respect to which predictions are made. The
experimenter state can be as detailed as the predator
decision state (it makes no sense for the former to be
more detailed than the latter), but usually it is less
detailed. If both states are the same and predators decide
in a deterministic way, we observe no partial preferences
on the individual level. If the experimenter state is less
detailed than the predator decision state (which, in
reality, will always be the case), then a particular value of
the latter may be uncertain given a value of the former. In
other words, there is a set of circumstances giving the
same experimenter state. In this case, we may ask for the
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probability that the predator decision state takes a value,
given a value of the experimenter state. It is exactly this
probability that specifies partial preferences on the
individual level. In this article, the experimenter state is
that of the classic prey model of optimal foraging,
[Ei , T i

h , x i], while the formula (8) gives the probability
specifying partial preferences.

We may also get partial preferences on the individual
level in a completely different way. Namely, even though
the predator decision state and the experimenter state
coincide, mechanisms of prey choice can be intrinsically
stochastic; e.g., predators may decide by ``flipping a
coin.'' In reality, it is virtually impossible to distinguish
these two cases due to the enormous complexity of the
predator decision state, so that from a pragmatic view-
point both the cases can be referred to as invoking partial
preferences on the individual level. Yet it may be
worthwhile being aware of the conceptual distinction.

The possible difference in the predator decision state
and the experimenter state can also affect our view of
optimality of predator behaviour. In the words of
Mangel and Roitberg (1989), ``if the external observer
has an inaccurate model of optimal behaviour, then it
may appear that the organism is highly suboptimal,
when this is in fact not the case.'' For example, any
predator considered in our article behaves optimally
within its local perception range, whereas it appears sub-
optimal when seen from the perspective of the whole
lattice where the zero�one rule is the optimal one.

Other Functions

In the theoretical work of Fryxell and Lundberg
(1994) on dynamical consequences of optimal diet com-
position, sigmoidal forms of partial preferences,

p2 (x1)=
Lz

1

Lz
1+xz

1

, z>1, (12)

are proposed and analyzed. Contrary to our approach,
this choice lacks any mechanistic reasoning and is
intended to phenomenologically mimic partial preferences
only. We compared Fryxell and Lundberg's function (12)
with our formula (11) and found that for a properly chosen
value of z the function (12) is very close to our function.
Another formula phenomenologically describing partial
preferences is inspected by Fryxell and Lundberg (1998).

The diet preference and the functional response curves,
having a step at the threshold density L1 for the zero�one
rule (see Figs. 1 and 2), become gradually increasing for
the partial preference model (see Figs. 4 and 5). This is
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not always the case. For example, the assumption of
Be� lisle and Cresswell (1997) on limited memory capacity
of predators also leads to partial preferences but does not
completely remove the step form of the respective



dependencies (see Fig. 9 in Be� lisle and Cresswell (1997)).
We also note that the functional response plotted in
Figs. 4C or 5C has an inflection at intermediate prey 1
numbers. It was obtained when a Holling type II func-
tional response was combined with an adaptive predator
behaviour, and produces a localized increase in the prey
per capita mortality rate due to predation, Such a super-
linear growth of functional responses has been shown to
have a stabilizing effect on predator�prey dynamics
(Murdoch and Oaten, 1975).

Consideration of the spatially explicit individual-based
model proves to be a good tool for our purposes, as it
allows us to treat each individual separately and
naturally define and work with its perception neigh-
bourhood. Within this IBM framework, our predator
decision rule can be further extended to situations in which
the neighbourhood size varies with different predators.
The threshold values L1 and L$1 may become individual-
dependent by separating the predator population into a
number of groups, each having different parameters, e.g.,
the probability of successfully attacking more profitable
prey, P1

a . Both these extensions may be motivated by and
made dependent on, e.g., predator age (gaining experience
when aging) or variability in predator body size.

Our mechanism (like many others) invoking partial
preferences for less profitable prey within the classic
optimal foraging framework still does not explain two
frequent observations, namely that (1) prey choice rules
often seem to depend on the density of less profitable
prey, too, and that (2) partial preferences are sometimes
observed also for more profitable prey. The same
mechanism as that presented in this article is now under
investigation for a slightly different individual-based
model and should involve both these features.

APPENDIX: DIET COMPOSITION

Here we outline a derivation of the diet composition
formula (1). We show that for a pair of decision
probabilities p1 and p2 and a sufficiently large numbers of
prey and predators (or number of food decisions of an
individual predator), the fraction of prey i=1, 2
individuals from all captured by a number of predators in
a single time step (or by a single predator in a series of
food decisions) can be well approximated by the formula

288
xi

S
pi P i

a<\x1

S
p1P1

a+
x2

S
p2 P2

a+ , (13)
where S is the number of lattice sites, xi is the prey i
abundance, and P i

a is the probability of successful attack
on a prey i when the predator decides to attack that prey
upon encounter.

Given that both prey types are randomly distributed
on the lattice at each time step, with each site occupied by
at most one prey item (regardless of its type), the prob-
ability that a searching predator shares a site with a prey
i individual is wi=xi �S. In turn, the probability that the
predator will successfully attack that prey is wi pi P i

a , that
is, the probability of encountering that prey times the
probability of deciding to attack it times the probability
of attacking it successfully. Consequently, the fraction of
searching predators that consume prey i at a fixed time
step approaches wi pi P i

a as the number of encounters
with prey i (that is, numbers or prey and predators and,
in turn, the lattice size) tends to infinity (the law of large
numbers), given no interference between predators.
Similarly, the fraction of attacks at prey i upon encounter
by a single predator approaches wi piP i

a as the number of
food decisions tends to infinity, given constant prey den-
sities. Hence, the fraction of prey i individuals of all prey
items that are captured by a number of predators in a
single time step or by a single predator within a series of
its food decisions, is well approximated by the formula
(13).
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