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ABSTRACT

This work provides a foundation for a quantitative dynamical theory of heterochronic
processes in the evolution of colonial invertebrate animals including Bryozoans,
Siphonophores and Ants, These processes are environmentally induced changes in the
time-sequencing of growth and development which can produce alterations in the mor-
photypes or castes within an individual colony. Motivation comes from Kfivan's theory
of environmentally induced constraints on population densities for ccological interac-

. tions, but the present theory is second order with allometric production variables z¥ and
population densities for morphotypes, N'. We are able to unite ecological theory and
——r the allometric form of the Wilson Ergonomic Theory via projective differential geome-

try and Wagner spaces which provide a natural description of environmentally induced
time-sequencing changes altering the allometric curve of a species. Such changes define
a model of heterochronic processes important in paleontology.

Keywords : Colonial animal, heterochrony, ergonomics.

1. Kfivan’s Growth RRate Transformation Defined by Ecological
Constraints

Many model ecological populations assume that per capita growth rate (i.e., intrinsic
growth rate) m, is a positive constant. The classical models of Volterra, Gause
and Witt, and Lotka tacitly assume this, for example. However, in the presence
of constraints on the population densities due to environmental stress or physical
stress, m must be variable, because these stresses will act differently in different
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age classes and in different parts of their range, in general. Therefore, we wish to
explore in this paper the idea of m being a function of the population densities
which can then respond to external constraints.

Let us start with a detailed example. Suppose two exponentially growing popula-
tion densities N!(t) and N?(t) are subject to an environmental constraint resulting,
say, from overlap in a common habilail. Let’s represent this as*

dN* i
T:A(‘)N ’ l=1,2 (11)
subject to the constraini relation
eN' +dN2 <1, (1.2)

In [16], Kfivan asks what alteration of A; will result from this constraint relation
(1.2). He writes
dN' ; :
T = A(,-)N’-—mN‘ (13)
and interprets m as the unbiased “mortality rate” resulting from overcrowding.
Figure 1 illustrates exponential growth of each of the populations resulting from

(1.1), until the constraint boundary is reached. On this line we have from (1.2) that

dn1 dN?
C(dt)+d(dt)=0. (1.4)
From which it follows that
MNY 4 dAgN?
=ﬁ:c,\11\fl+d,\2hﬂ‘ (15)

Y

Fig. 1. N1(t) = Delr1—da)t, N2(t)

*Parenthesis means #o! summed.




A Dynamical Theory of Heterochrony: .., 453

Consequently, life in the overlap region is described by the dynamics on the con-
straint curve. It is

dN?

—~ = N1 — e N ~ dAN?)

dN? (1.6)
—r = NE(Ag — e N — dA;N?) |

But, this system has no positive equilibria, if A} # A;. Indeed, this result holds for
any form of consiraint curve F(N', N?) = 1 which allows a unique solution for m
because of the form of (1.3). Hence, the consirained life-style for two exponentially
growing population densilics in the overlap region musi have the same growth rate
(A1 = A2) if they are both to survive. We call this the pre-symbiant condition and
we shall have occasion to use it in what is to follow, which concerns evolution of
symbiant organisms from previously separate species [19, 20).

Let’s consider two logistic populations subject to the linear constraint (1.2). The
Kfivan system is then ‘

% = N‘()‘(;) - a(,-)N") - mN‘
_ ch()q — Cl:lNl) + sz(Az - ag.Ng) . (17)
- eN1 + dN?

eN'+dN2=1

In Fig. 2 we see that the separate logistic populations will follow a trajectory
intersecting the shortest constraint line. This means the populations will never
reach their logistic equilibria. But, for the case of the longer constraint curve, that
equilibrium is below the line so that eventually the logistic equilibria will be reached.
Note that there is a discontinuity in the 1st derivative of the trajectory as it hits the
shortest curve, because from that point on the state is confined to the constraint
line. Note the consiraint is not enforced until the boundary is reached.

Let’s suppose that for ¢cN! + dN? = 1, ¢ and d have been chosen so that a
trajectory must hit it (i.e., ¢- %f 4 d- %f > 1). The consirained dynamics is 1-
dimensional and has steady-state

_ a4+ (A] - z\g)d

N} =
0 con + dcvl (1 8)
2 o + (A — Ay)e
NG = —2
covy + dCt‘]

as is easily deduced. One can show this is a (linearly) stable poini relative to other
points on the constraint line, simply by computing the first partial derivative of the
right-hand side of dN*/dt = Q(N!), which results from dimensional reduction, at
equilibrium (1.8}. It is negative when all other parameters are positive.
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N'4

Fig. 2. Linear constraint curves and separate logistic equilibria.

If we choose ¢ = a) /A1, d = az/A;, then Ay = Ay = X implies N} /NZ = a3z /oy,
the same ratio as before external constraint had been imposed. Thus, the sieady-
state direction N} /N2 is preserved under Kfivan transformation, if A; = X, (see
Fig. 3 below). This holds for any constraint F{N', N?).

N'J}
1 A A
TR T (& &)
|
< (N5, N3) |
I
TN
d

Fig. 3. oy N! + @aN? = A, Linear contraint and constraint equilibrium. Preservation of steady-
state direction NZ/N}.

The necessity for these differently shaped constraints has been argued for by Tilman
[22] and KFivan [16]. We now investigate two more examples below.
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A. For the separate logistic systern with elliptical consiraint we have taken

dN? , . .
'—&'t"" = N'(A -_— Cl(")Nl) -_— mN‘
F? = ¢(N1)2 + d(N?) < 1 i=1,2. (1.9)
Y - 22
JE — A 1 J(_i - A
In the overlap region represented by the boundary of the constraint region we
have . )
dN dN
Nl Painl 24 =7 -
v (40 s (A7) a0

from which it follows that

(a1 N7)? + (e N?)

= TR (1)
with (a1 N1)2 + (a2 N?)? = A%, The constrained dynamics is represented by
le 142 1 1,3 2 14213/2 1
?z —aI(N ) +‘:\"§‘{(L’!‘1N ) +[A —(alN )] }N - (1.12)

Furthermore, there is a unique positive equilibrium (N3, NZ) which satisfies
NZ/N} = aj/az so that the steady-state direction of the separate logistic sys-
tem is preserved under Kfivan transformation. Consequently, there is exactly one
point on the constraint curve with this direction. It is

A A
Ni=——, N= . 1.13
0 al\/i o ag\/i ( )
If x denotes the right-hand side of (1.12) then
dx A

so that (1.13) is (linearly) stable on the constraint curve (but not in the whole
space). This example can be extended to any number n of separate logistics, but the
(n — 1)-dimensional constrained dynamics on the corresponding ellipsoidal surface
is complicated and would have to be analyzed, numerically.

B. For two separate logistic populations with pre-symbiant condition we now con-
sider a hyperbolic consiraini relation

(N‘+c1)(N2+cz)$é—, (1.15)

where @ > 0 and ¢;, c3 are certain constants. The boundary curve is a hyperbola
and we suppose it defines a certain set of states (N!, N2} which are of unit length,
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just as \/e(N1)2 + d(N2?)2 = 1 and ¢N'+dN? = 1, do in the previous two examples.
The positive first degree homogeniety of these examples is basic to our present
method. We wish to find L an positively homogeneous function of degree one in
N and N2, such that L = 1 will be equivalent to (N' + ¢, }(N? 4+ ¢3) = 5 e, 80
that the solution sets are the same. To do this we apply the well-known Okubo’s
Trick and merely substitute N*/L directly into the boundary relation and obtain

eL? + 2(b; N*)L 4 (b;j N'NI) = 0 (1.16)
with ¢ = ¢jeg — %, by = -2, by =~ and (b;;) = (?,2 llﬁ). Thus,
_ _ s Nt 4+ ¢ N2
L = ﬂ :t o= 2(_‘
:t%\/ (2N + (a1 N2 ¢+ (—;- — 261c2) N1N2] . (1.17)

This is clearly positively first degree homogeneous in N¥, as required. This fune-
tional L is an example of a Minkowski (o, 8)-metric [21] called a Rander’s melric.
One usually needs such norms L to be positive-valued.

Proposition:

| 4

L=a+8>0 if =—<eciea< —.

Q@ Q

Proof:

It will suffice to show 2¢L > 0 if ¢1ep < %. First we show o? is a positive definite

quadratic form. By definition, the matrix a;; = %3,-3,-(&2) is just

2 2
62 - — (1Cy
= Q@
(i) = 2 2
5 — C3Cg c]
whose trace is positive and whose determinant is det (ay;) = -—a“, + %ﬂ. Here, §;

denotes the partial derivatives with respect to N*. Hence, det (ai;) > 0 < cicy >
%. Using [5], Prop. 3.1, Chapter 1, we only need to show {(ay; — bibj) is positive

definite. This matrix is symmetric with entries
302 2 5c .
472 Q 17
3
N 32

4
The trace is positive and the determinant equals the expression

4
@ .

2.2 0
—C102 + _C]C2 -

Q
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This expression vanishes at ¢jcg = % and at cjcy = % The graph of ¢)e; versus

the determinant is concave down and positive at the midpoint of [%, %] This
concludes the proof.

The hyperbolic constraint curve is asymptotic to N! = ¢; and N? = ¢, and
passes through the separate logistic equilibria. This curve is identical with the in-
dicatrix L = 1 from (1.17). The Kfivan transformation function m is not simple
in this case. But, because Kfivan transformations of pre-symbiant systems must
preserve the steady-state directions, we can obtain the steady-state (N}, NZ) geo-
metrically from Fig. 4 by computing the intersection of the straight-line with slope
ay/ag through (0, 0) with the hyperbola. We have

(N}, N2) = (_ (cron + coon) + \/[(c21a1 + cpar2)? — 4a1azC], ﬂN&)
oy [L4)
- 1 4010.'2 -A 1 40.’1&2
= (=2 - — (2 LYY Pt B L]
(1, e2) (2&1 %o ( *T0 ) 202 2a2‘/( R )) ’
(1.18)
where o'r\—l = ﬁ —¢; and (—j‘; = ;107 - ¢3. Linear stability at (N}, N2) on the

constraint curve can be implemented with a computer.

N2 A A

4

(C‘I: CE) I\j1

Fig. 4. Hyperbolic constraint curve (N +aliN? +a)= % >0,c1 <02 <0,
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2. Constraints on Production and the Projective Geometry of Sprays
and The Adaptation Theorem

Our perspective now switches from population densities and their ecological dynam-
ics to biomass production. The ith type population is assumed to produce organic
material in characteristic forms which accumulate in the local environment (at least
a net accurnulation accounting for bioerosion etc.) For example z'(t) could be a
measure of aragonite produced up to time ¢ by coral of type i, i=1, ..., n, on the
Great Barrier Reef [3,4,5,6,8].

Let us consider the n-dimensional Volterra-Hamilton system (Passive, i.e., Con-
stant Coefficients) [2]

dz’ h
T = Fol’

dN? ,
o = AN —agy (N7 —mNi i=1,2 2.1
subject to constraint t=12...,n. (21)

F = {c',(N:')2}1/2 =1

Oy
i = —

A ¥,

This is a variation of Example A above. Here, k(i) denotes the per capita production
rate of the ith type producer. We will set them all equal to one in what follows.
It is easy to compute the Kfivan function for (2.1). It is

m=J\- &‘%{%2)3 (2.2)
with the constrained dynamics of production
o (%)
‘f;' —aG) ( il ) z a (2.3)

@

If we compute a;; = 8 6 F? as in the previous section we obtain a positive
definite diagonal matrix w1th gij = ¢; > 0. The constraint boundary surface is

written
) 172
dzt
[Ci (‘“‘F) j' =1 (2.4)

Let us consider the geametry of constraint,
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and implies (Riemannian metric tensor arc-length)
aijdztdz! = ei(dz’)? = 12(dt?) = ds® (2.5)

where { > 0 is factor depending on the specific time units employed (seconds, years,
etc.) Of course, there are units for the z' as well and these may be absorbed in the
coefficients ¢;. The infinitesimal quantity ds is the Riemannian arc-length. That
is to say, if 7(s) is a smooth curve in the space of z!, ..., 2", then f_y ds is its

arc-length, i.e.,
. . /2
h dai\? v
8§ — Aﬂ [C,‘ (W) ] dt 5 (26)

where v is given by a parameter { along v and 2! = r*(f). Clearly, it does not
matter which parameter { is used, the answer is the same because of the chain rule.
We see that for the Riemannian arc-length.

ds=1-dt, (2.7)

whereas (2.5) suggests ds? is a weighted average of all da - da?.

Since ¢ is real time, it seerns therefore natural to interpret s as some measure of
total production, say, size. In this case (2.7) tells us that size increments are directly
proportional to time (age) increments where the dynamics of size s is defined by
{2.1) and (2.5). To make this clearer, set d5 = Be*dt and substitute into separate
logistic dynamics,

d?z de’ dei\?
@ = Na T (I) - (2.8)
Thus,
d*z’ dz\?
ds? = ) (dg) : (29)

From the general theory of sprays [5,11] it is possible to show that s = 65 + const,
and that (2.9) is a special case of spray dynamics

2zt , dz
— = — 1. 2.10
i = (m' dS) (210

If F is conserved under the flow of this spray, then b = 1. Here the (2} indicates
that H® is positively homogeneous in dz'/ds of degree 2 [i.e., for any fixed constant

qg>0, J('-I; (:r:, q- ﬂ—f) =gq%- 1(‘1; (z', 3—‘:)]. Such a system is called a spray, because its
2 2
solutions are such that there is a unique one joining any two close points and one in

any direction through a fixed point [5,11]. We shall have need of Euler's Theorem on
homogeneous (C*°) functions: If f(y', ..., y") is positively homogenous of degree,

r, then (8f/8%")-y' =rf.
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The spray equalions in affine form are written

d*s* . dr d2x . ( dz)
- _— - i =
dt? g) (I’ dt) dz i \" @t
: - : (2.11)
dz* dx?
dt dt

for all 4, j running 1 through n. The natural parameter s for this spray is determined
completely by the spray by solving

d*s ﬁf: H,-(zd_z)

4z _ d o\ dtl
ds — dz‘ (212)
dt dr

Thus, s = A+ Bfef W for arbitrary constants A and B. The advantage is
that with s as parameter along trajectories, (2.11) becomes {(2.10) and the latter
is invariant under arbitrary transformations (smooth) of the coordinate functions.
The spray equations have the same form in any coordinate patch on the underlying
smooth manifold.

In the case (2.8) above p(t) = X and ds/dt = B - e,

If we write (2.3) in terms of an arbitrary parameter  we obtain

da' \®
d?zt dz' \? Ci% (—(F) dz}
T T T (dr) T ey o (2.13)

In this instance, c; (%ﬁ-—')? is nol constant, but the terms other than p(r)‘z—’:' are 2nd
degree homogeneous,

One of the most interesting facts about a Kivan transformation in the present
context of production modelled by Volterra- Hamilton systems is that it leads to the
projective differential geomelry of sprays.

Let us now discuss this at length., The function m— X is (positively) first degree
homogeneous in dz'/dt and denoting it by v, defines a “time-sequence change” by
introducing along trajectories a new {projective) parameter,

p= Bje"fv et )gs g A (2.14)
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where v is a sohution of (2.10) and A and B are arbitrary constants. Now (2.10)
becomes, after two applications of the chain rule,

a2zt . dx dz\ dz* |
—— Hf —_— —).=
dp? () (z’ dp) +¥ (x’ dp) dp (2.15)

which is again a spray. Thus, projeclive change preserves the spray properties.

Returning to the Kvtvan problem in our context, we would like to ask if, given
e spray and a constraint relation (i.e., its boundary) or indicairiz of a norm F
uniquely defined by Okubo’s method, can we find a new (projective) parameter p so0
that (2.15) holds, p is defined by (2.14) and F (z, &) = 17 The latter amounts to
saying dp = F(z, d) or that the projective parameter p is the arc-length. But, we
are nof asking that (2.15) be geodesics of the F-geometry defined by g;; = %3.-3,- 2
(We reserve the symbol a;; for Riemannian cases only, as in (2.5) and the hyperbolic
constraint example in Sec. 1.) The geodesic property will not hold generally, even
though F =1 along all y. See an example in Sec. 6.

We now prove the interesting

Theorem (Adaptation of Kfivan Type):

Given a local spray with natural parameter s, and

dr! - dyt : .
==y, %:40'(;;1,...,3,“), i=1,2...,n (2.16)

such that G* are independent of coordinates z!, there exists exactly one projective
transformation function ¥z, y) for each fixed choice of a (Minkowski) norm F,
assurned independent of #*, and whose projectively related spray is locally given by

%zt [ dx! dz™ dz! dz" ) dz?
LN Vo TN (o i & 22 2.17
dp? G(dp’ ’dp)+¢(dp dp / dp (2.17)

Here, there is no z-dependence on the right-hand side. Furthermore, all solutions
of (2.17) satisfy
dx! dz®
_— ..., —] =1 2.18
JUINES (218)

and

_dp (4= _ 20,(0)G ()Y
vy) =¥ (dp) = J[F(y)P : (219)
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We shall first prove a

Lemmat
If F =1 along solutions v of a spray as (2.16) then

along ¥ where

The proof uses that F is independent of z*,

Proof: Along any solution ¥ we have for the total derivative d/ds that

_ dF? dg'.? i3 d.yl .
T A
dz* . . . dy . . &y
= (Ogs5) ds vy + (8i'gij)§;y'y” + 2gi; Eyj .

But, Begij = 0 because i F = 0 and g;; = 18;8; F2.
Also, g;; is of degree zero in 3, so that Euler’s Theorem on homogeneous fune-
tions gives
\ '.dy‘ . i dyl ; R dy’ ,
(i)' ——v = (Cusy )LV = (er.-‘y')-as—!r’

which vanishes identically because C',-;,-y‘ = éi(g;;)yi =0 and
Lo os 2
C,'jk = Za;,aja,-F

is completely symmetric (see [5]). This completes the proof of the lernma.
We now apply the lemma to solutions of (2.17). Recall that ¥(y) is smooth and is

positively homogeneous of first degree in y*. Obviously, since F (dd—‘:-, ceey ‘%}) =1
holds along +,
da’ . f dxt dz" dz\ dz'
=gij— (-2¢° (2 . & —). =
0= 9 gy ( ¢ (a’p’ ’ dp)+¢(dp) dp)

so that we have uniquely

¥(y) = 205,(NG (Y, ..., Y)Y

= (2.20)

and the proof is complete.
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Remark:

The adaptation theorem holds even when G* and F depend on zf. The same proof
works and the form of (z, y) is similar (but is now dependent on z), the only
difference is that 2G* is to be replaced by 2G* — HE = ' where HYL denotes the
right-hand side of the geodesics of g;; being given by —7;ky5y" where

Tie = 59“(5‘wﬂ + 8901 — Bigsx)

are the so-called Levi-Civitd symbols [18].

Let us further discuss the projectively transformed spray (2.17). What is the
structure of this new spray? We answer this question now with a view towards
ecological interactions. Let us denote dz* /dp by & and differentiate the right-hand
side of (2.17) by 82/8¢7 9¢*. Denoting the result by l_"_‘;.k(z, &) we find

iy = Dl + Sivhe + 8345 + &' (2.21)

where I‘;k = §IHjoLi gk, ¢; = %%‘é— and t3; = O1;/0E*. These are the new
interaction coefficients, the old ones being the n® gquantities, I‘jk; i; and ;; have
degrees zero and minus one in £, respectively, by Euler’s Theorem on homogeneocus
functions. In fact, I‘;-,‘. and I_“:;k have degree zero in £.

Let us examine our findings with more concrete ideas. Firsi, we start with a
Volterra-Hamilton system (k(;) = 1 for each 1 for convenience)

di? _ i
dt (2.22)
AN L ik i

Here, the ecological interactions are given by n® coefficients Fj’k which are often
constants but may depend on what is produced, i.e., z* (often ' is taken as a log
biomass (i.e., z' = Inm', as in Sec. 7 below) and hence v -z! is allometrically related
to biomass and can be usefully interpretted as a secondary compound, or toxin, see
(8,3,7], for more information). Using s = Be*' we transform to the natural param-
eter of this spray, obtaining the form (2.16) with l";kNj NE = 2G. Second, we have
chosen a (Minkowski) norm F as a constreinl funciionae! in the sense of Kfivan:
F(y', ..., y") < 1 is the constraint relation. (Its boundary # = 1 is uniquely
determined by Okubo’s trick given any quadratic hypersurface description). F' can
depend on z*. According to our theorem there is exactly one projective transforma-
tion %F and its associated parameter p from (2.20) and (2.14). The new spray has
coefficients of interaction given by (2.21). The trajectories of the transformed dy-
namics are identical with the original in z-space. But, reparametrization via (2.14)
gives “new ecology.” We could think of p as a “non-linear tick” relative to s or to
t. Instead, it is thought of as a transformation of production, non-linearly changing
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the size parameter s of the original system. We use p = D&* to return to real time
to obtain

i ]
. (2.23)
dN? B oariark 4 Y A

The X is freely chosen, it could be taken as A = A\, D = B. In any case, this last
transformation may or may not be biologically appropriate depending on the model
considered.

Let’s be very specific and go through this process once again with

d’ :
22 N
dt
dN* ; :
T =W - ey
F={a(N)}?, o= “T _
Use of § = Be’' yields (2.9), for some constant B.
Then, by the theorem above
Citls Es’ 2‘51'
Pz, &) = CLACN S 'c:((gi))zl , (2.24)
and our resulting spray has the form
dz.":i : Cilxy i3 i
Py SO o2

ci(€')?

which is the same as (2.3) obtained by Kitvan's method excepl t is replaced by p in
the above. This is an extremely imporiant dislinction, however. In this theory not
only is it true as with Kfivan that the constraint is now satisfied, it is satisfied by
a transformation of the parameter along the original spray, i.e.,

FE, ..., e =1,
not F(N', ..., N") =1, as in the Kfivan Method. Thus, dp = F(dz', ..., dz")
not dt = F(dz', ..., dx™). Also, the above 2nd order theory (Kfivan’s is first

order) is continuous. There is no discontinuity of the partial derivatives in the
transformed dynamics when a trajectory hits the constraining surface. In fact, Ni-
space, trajectories are never off this surface. This is the nature of production in our
colonial animal model.

On the other hand, we can use the full projective theory above as a formal
generalization of Kfivan’s by ignoring the distinction between ¢ and p in (2.3) and
(2.25) and implementing the auxillary variable z‘ only as a device, as done originally
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by Volterra in a somewhat more simple approach to ecology than the present theory
(see Chapter 9 of [2]).

The differential geometry of sprays and the associated projective theory are use-
ful because their transformation behaviour is well-known and convenient. We are
saying that even from Kfivan’s perspective it is still of interest to study the 2nd
order system projective geometry. For example, (2.3) has the same solution sets
(i.e., trajectories) as (2.9) but with a different clock — given by ¢ and (2.14). In
this particular case (2.9) is very easy to solve to obtain the trajectories in z-space
or their tangent fields in N-space {or £-space). Generally, Kfivan's method is very
complicated for dimension > 2 and the above theory provides considerable concep-
tual power to settle questions of equilibria stability, etc. Of course we must suppose
A=A, i=1,..., n and that the constraint surface is a quadratic hypersurface.
In any case, in the next section we adopt fully the method of projective geometry
to model evolution via time-transformations along growth trajectories, i.e., a model
of heterochrony, a term coined by biologists [1,13].

3. Division of Labour in Colonial Animals. Wilson’s Ergonomics and
Allometric Space

The contemporary biologist L. Margulis has argued convincingly that the vast
array of somatic cells of eukaryotes evolved by symbiosis from separately living
bacterial species almost two billion years ago [19,20]. Mathematically, a necessary
condition for this evolutionary step is that the proliferation rate of cells in separate
populations should be nearly equal to allow their DNA, RNA replication machinery
a stable association in which all members of the smaller (e.g., mitochondrian) cell
type live inside the larger in a one-to-one fashion. This has been expressed as the
pre-symbiant condition on growth rates in the previous sections. We have seen
that environmental constraints on exponential populations must subscribe to this
condition if they are to survive in an overlap region of their ranges. Herein, we wish
to further require conditions on two separately living pre-symbiant populations to
satisfy the fundamentals of Ergonomic Theory of Colonial Animals due to E. O.
Wilson and N. Beklemeshev. We intend to describe evolution of fossil invertebrates
like polymorphic Bryozoans, as well as eusocial insect colonies and Siphonophores.
For this, z* represents log biomasses of morphological characters of fossils or of living
biomass of the ith caste of a social insect colony like an ant colony. The Principle of
Division of Labor means that the total energy of growth of a polymorphic (i.e., at
least two castes) colonial individual must be apportioned between all the constituent
morphotypes until sexual maturity is attained [10,23]. Each morphotype is designed
to perform a different task for the colony as a whole, There is wide agreement that
Natural Selection in colonial animals is operating at the level of the colony-as-whole.
Rarely, is it true that there are allelic (i.e., genetic) differences among the castes.
Indeed, they are determined almost entirely by the environment, and “are usefully
interpretted as a consequence of variations among species on growth fransformalion
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during larval development,” [24]. This colanial growth and development has been
described by Oster and Wilson in terms of a curve in allomeiric space (see [24]) as
in the caption to the figure below.

Let us consider the 2-dimensional (i.e., 2 castes) pre-symbiant system

dzt

— = ki N*
dif" (3.1)
W = AN' ~ a(,')(N‘)z .

Again, the z' are Volterra auxiliary variables which measure accumulation of

biomass of the ith caste or morphotype, with k(i) the per capita rate of production.

Is Eq. (3.1) consistent with Ergonomics? Is it in agreement with division of labour?
Well, Eq. (3.1) becomes

&2t . [ drt 2 dr?

> “‘(”)-A”:O (3.2)

@ T e r

upon substitution, and this is the Euler-Lagrange equation of the variational prob-
lem (fixed endpoints)

6[: [exp (2:—::.-"-,\5)] : (%)2&:0. (3.3)

But, (3.1) is not truly coupled, as symbiants must be. We need a more general form
to capture the essence of symbiosis.

We write dgt
. 34
WV D NINE 4 AN oo
o T Tl +
to replace (3.1). Here, the 8 constants must surely satisfy
: oy R i , .
= k—:, =T #0 for i4#5, (3.5)

as well as the requirement that (3.4) are Euler-Lagrange equations for

t dz
5/0 E(z, E,t)dt:O, (3.6)

a regular variational problem with fixed endpoints for some C® convez Lagrangian
L. The coefficients ' are uniquely determined, but £ is, only up to a fixed multi-
plicative constant. Here, they are

r;:,.m‘;_j(i;ej) and Ty == (i#3) (3.7)
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socicl coverage
(x,¥) * «5

individual coverage
(‘ly hd ..‘.,]’_)

allometric curve

SECOND BOODY DIMENSION {y)

efficiency °
contour © & ™~ unfilled

tasks,
/ unmet
o L] opportunities

o

FIRST 800Y DIMENSION (x)

Fig. 5. Egonomic Allometric Space of Oster and Wilsen for Two Characters of a Colony {Log-log
Plot}. “The worker caste of each ant species has a characteristic allometric curve drawn here for
two anatomical dimensions only (for example, thorax width and head width). The allometric curve
exists within the broader allometric space of all possible physical forms. In the local environment
where the colonies live there exists a set of contingencies, consisting of opportunities such as food
items and nest sites and perils such as predators and cave-ins. It is postulated [in Ergonomie
Theory] that for each task by which the colony meets the contingency there is a point in the
allometric space that corresponds to the physical caste ideally suited to perform the task. There
is also a zone of the allometric space, with radius ¢, within which the task is performed with
at least adequate proficiency. The specics can cover a greater number of task poinis by allering
the allometric curve, by increasing individual coverege, or by increating social coverege through
cooperative efforis (Oster and Wilson, 1978).”

dz o dei\?  [dz?\?
L (I, E, t) = exp (2k—l1} — At) (d_t) + (I) (38)

(see [5], Chapter 5). Therefore, the frue symbiant has its growth given by

and

dTa: =k(,-)Ni , i=1,2,
-‘%;—1 = AV (1= 20N — ey N' + o (F7) V?) (3.9)
%ri = AN? (1- 204N — o N? + a3 (§3) - M)
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This model of a dimorphic colontal organisfn exhibits a unique posilive stable
(linearly) steady-siale,

)\a,-

Ni= 2
5 .
a? + o

(3.10)

These steady-states are to be regarded as populations of mature, adult sized, polyp-
persons, castes or morphotypes within the colony. At this point all production is
directed to maintenance and repair. Accordingly, we define the real growth variables
by

t
¥ = ] (Ni(r) = Ndr + D' . (3.11).

0
At t =0, *(0) = D > 0 and #(0) = ki)C* and at or near adult sizes y* = 0
and dy'/dt = 0. Thus, after transforming to y-coordinates, the fotal energy {2.8) at

adult sizes is (taking ky = ky = 1)

2
A

Lo= ——
af +af

(3.12a)

while that available for so-called real growth is

dy! 2 dyz 2
(W) + (?) (3.128)
and is negligibly small.
Now substitution of (3.11) into (3.9) yields

dy!  _oapdyldy? o [yt [dy?\’ dy!
w L ety (7@?) —(a‘) A =0

d%y? oy dyt dy? oy | (dy? 2 dy! 2 dy!
SV gy dy e fay ) Ay W _y,
TR TR TR (dt) (dt) tAg =0

If we set a; = ag = 0 in (3.13), then the solution y*(¢) with positive value at t = 0
and which is decreasing at ¢ = 0, is 4*(t) = B* - e™*!, where there is an A = Ina'
st. A' —y*(0) = B* and Ina’ — B'e™* = Inp*(t) where

L= exp (Q%y‘ + )\t)

(3.13)

U'(t) — a"e'Bie_“

is a Gompertz growth curve, with predetermined upper asymptote. Thus, real
growth dynamics generalizes Gompertz growth (a; = ay = 0).
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Gompertz Growth Curve

Fig. 6
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The eristence of A' = Ina’ amounts lo a stalement of determinant final adull size.
Extensive laboratory measurements, performed with statistical precision indicate
large numbers of individual animals display Gompertz growth for the same A for
their organ growth (hearts, livers, etc.) [17]. Here we are pointing out that (3.13)
is a well-founded generalizations of Gompertz growth in multi-organ individuals.
Note that real growth (3.11) generalizes Gompertz growth to the situation where o;
are not zero (i.e., equilibrium (3.10) exists}). We dub (3.13) the growth equation for
¢ dimorphic symbiant (or colonial) organism. It remains to be verified using field
data.

Note that the natural parameter of (3.13) can be expressed as s = A — Be™ 7,
This is because, the spray associated with (3.13) can be written for general param-
eter

2 - . k dzs .
2y L dydyt TE dy
ar Thikgr ar T ds dr (3.14)
_ dr
with ' given in (3.5) and (3.7), k) = 1, and s, as defined above, solves
d’s ds
gz tAm =0, (3.15)

uniquely for A — B > 0 and ds/dr],=¢ > 0. Thus, if r = t, then s is none other
than a log-Gompertz variable. This is a strong reason for interpretation of s as
size. There will always be an arbitrary multiplicative positive constant to relate
the natural parameter (which is some cases is true arc-length) to size based on
allometric methods.

4. Social Interactions, Curvature and Complexity, Kwang Jeon’s
Experiment

Following Douglas [11] and Matsumoto [21] the curvature of a spray as (2.10) is
defined simply as _

Djp = 3,'3.&3;{12’; . (4.1)

This is a tensor so that if it vanishes in some coordinate system Z' it vanishes
in every coordinate system. Vanishing of the spray curvature is equivalent to H*
2

being quadratic in ' = dz’/ds. Thus, the spray associated with (3.13) has D =
0, while D # 0 for the spray (2.3} or (2.25). The point is the Douglas tensor
detecls density-dependence, in the ecological sense, in interactions. We define social
intergclions to be present in a Volterra-Hamilton (pre-symbiant) system if and
only if the associated spray has nen-zero spray curvaiure tensor, D;-H. Such social
interactions are inirinsic in the sense that it is not an accidental choice of production
variables z* which cause density-dependent interactions to occur, rather there is
no choice possible which would eliminate them, rendering the Volterra-Hamilton
system quadratic.
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But, it may be possible to reparametrize the spray curves when D # 0 to obtain
the classical quadratic interaction patterns. This is possible for the spray (2.3),
because it is projectively equivalent to (2.9). Let us look at the general situation.

Given a spray as (2.10) with natural parameter s and coordinates ' and inter-
action coefficients I';, = ;0 g)‘, the n¥ quantities

ll'a ll'a 1

i . §re — —— gire -
T 1 T 1k T

it = I‘;k - {:"D;ka (42)
have the same values before and after application of any projective transformation
Y. They are called the projective connection coefficients (in coordinate z*) and are
projeclively invariant. This means thal = describes structures of the given spray
that do nol depend on paremeterizalion of the spray curves. The n® coefficients
w}k constitute neither an affine connection nor a tensor under arbitrary coordinate
transformations, only under the so-called projective group [11]. Now, just as

Diy = 0T}y, (4.3)

we define the (Douglas) tensor
Kl = 0y (4.4)

and find that, X = 0 <= there is a projective transformation to a quadratic
dynamics and generally

i i 1 imya 1 ig Ma
Kjrt=Djp — P (n—_HéjDakl) “nyit GaDjnr (4.5)

where P indicates a sum of three terms obtained by cyclic permutation of j, &, 1
and @, indicates the partial derivative with respect to £2. Thus, D =0 =K =0,
but not, conversely. In fact, any projective transformation of a quadratic spray will

result in a spray with £ = 0 but usually not D = 0. This implies that a Kfivan
transformation m of a pre-symbiotic ecological interaction results in

I_.‘:;k = F;k +6;-mk+5imj +£imjk (4.6)
as in (2.21), but that from projective invariance,

i}k = ;k ) (47)
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for the projective connections associated to I' and I'. Therefore, if I"j-,c = 0 whenever
i # 7 # k (naturally n > 3), then
Dy =€mx ((#£5#K)
Lo ds\? (4.8)
I‘}knyk =f’m:‘kf’fk' (E) .
But rn is 1st degree positively homogeneous in y so by Euler’s Theorem, the right-
hand side vanishes. That is, in

dzt
Y
di
ds

(4.9)
= -Tuy's*

there are no $-way interaction terms (Le., i # j # k) if before projective transfor-
mation by m, there were none. [Note that (¢ =y = da’/ds) Em /€% = 0 always
holds.] Therefore, projective transformation does not allow higher-order interactions
to emerge. Bul, in considering how social inleraclions arise, one naturally begins
with classical models which are quadratic. From these, Kfivan transformafion in-
duced by any environmental constraint F (homogeneous in £} we like, cannol result
in n-way interactions, n > 3. We may paraphrase this by saying that projective
transformations do nol increase complerily. We are able to rectify this problem
with use of semi-projective transformations in the next section, (see [12]). But, let
us now demonstrate the utility of projective theory in a classical (i.e., quadratic)
setting.
Consider the Volterra-Hamilton system

dz! 1 dx?
—_—— = = N2
di N, dt
1
B = AN = (V1)1 = 20N (4.10)
dN?

—a?— - AN2—,81(N2)2—2ﬂ2N1N2 .

This describes production in a 2-species Gause-Witt competition if oy > 0, x>0,
Br >0, 8 >0o0r parasitism if @y > 0, oz < 0, £1 > 0, By > 0. Converting
to the natural parameter by s = Ae** we readily compute the non-zero projective
connection coefficients to be (use (4.10) in the form (3.14), obtain l";'- ¢ and then use

(4.2)) . .
th=gle —28;), w3, = 7{A1 — 2az)
’ : (4.11)
iy = g2z~ 51}, h = 3(282—en) .
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Please note that 7}, = #}; and 73, = 0, always hold, as follows directly from
(4.2) and homogeneity of D (degree minus one) via Euler’s Theorem. Returning to
real time ¢, we have the ecological equations

dN1 < 1 2
T = —ANI - 5(01 - 2ﬂ3)(N1)2 + §(ﬁ1 - 20:2)N1N2
(4.12)
dN? - 1 2
— = —ANT = 2(B1 = 202)(N?)? 4 5(en = 28)NN?

where A > 0, but is otherwise arbitrarily chosen. If a; < 8; and 8, < ay, then
aj — 2833 and 3; — 2y are both positive and the system is classical symbiosis with

positive steady-state (ﬁ, 51—’\203) (N3, N&). This holds even if a; < 0 and

the original system ecology was parasific. But, note that the N'N? cooperative
terms cannot be neglected, by an order-of-magnitude argument, by comparison to
the (N1)? and (N?)? terms. Nevertheless, it is true that the system goes extinct
if cooperation is negligible (then only —AN* terms remain). This reminds us of
Kwang Jeon’s experiment in which en originally destructive interaclion of amoeba
and a baclerial pathogen evolved lo a symbiotic slale in which neither could survive
without the other. The above method shows that this evolulion can oceur by a
time-sequencing change in produclion, that is by a projective transformation. More
generally, mitochondria in eukaryotic cells of plants and animals are described with
this model via the symbiosis theory of cellular evolution of L. Margulis [19,20]. Note
that complexity does not change, here.

In this model, 7}, result from a projective transformation v = ﬂ+1 I3, = Oy
applied to the spray (2.10). Generally, only a covariant vector field is needed to
define such a time-sequencing change, but on many occasions v = 8v/8z* = G;¢
holds, as it does in the present case as is easily seen from (4.2) and (2.21). In the
case (4.10) ¥ = (a1 + B2)z' + (81 + a2)z?, thus 1r"k results from a special projective

transformation which does not depend on & ( y‘ = ‘fj’; ) only on z*. But, what

of the projective invariance of 1r ? Generally, 7}, do not behave like I",c under
changes of coordinates. Indeed,

0F o'y, 0% 0%

Bz) 9zF "° T B % Bzidxk (4.13)
oz" 8z° _, ozt a*x g 00 01t 86
=— -t =7+ 5 4.14
F I L PO L P P + dzf dz* + az* dgi ' (4.14)
where 8 = n_+1 log [det ( 5 x,)] Thus, = transforms like T if and only the trans-

formation has constant determinant, so is essentially “special linear”. Nevertheless,
the intemct:’on coefficients of a spray T delermine a unique projective conneclion;
by ¢r = +1 ——=T'4, even w1thout the gradient condition ¥, = Gpt. But, the resulting
projective quantilies 7er define an entire class of inleraction patlerns because these
quantities are projectively invariant. But, 3, are not examples of any ri ti as (4.13)
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and (4.14) show. But, w;:k has a representative called the normal connection, and
this is a 1"_';' & and has the identical components of #. This normal representative of
7 is what defines (4.12) as an ordinary interaction dynamics. We have seen that it
is projectively related to (4.10).

# (Normal form)

VAN

Ty Ty Tigy e Ty Ty -

(class)

dN‘

it (r)  NIN® L AN' =0 (Typical Ecology)

Fig. 7. The I'yyy are all time-sequence transformation (i.e., projectively) related to cach other,
and 7 given by (4.2) applied to any Ly in the elass, is always the same, provided the coordinates
z* are fixed once and for all.

Applied to (4.12) we see that classical Gause- Witl competition or parasilism are
members of a class of ;) whose projective class 7 has a symbiotic dynamics for ils
normal represeniative I_;:k. We show this is the figure below.

Symbiant (=)

S

Parasitic (T'(y)) Competitive (I(,)
Fig. 8

At the level of separate species, N' and N? may inferact compelitively or symbi-
otically, but if they are {o constitute, in addition e colonial individual, (an emergent
Jform at a higher level), then these inferactions must be subsumed under ¢ normel
Jorm which is symbiotic. Generally, the concept of normal form of ecological in-
teractions within a colonial individual gives us an approach to looking at processes
both within and between levels in a hierarchy which expresses emergence through
time-sequencing changes in growth and development. We shall employ this in the
next section on a model of the processes of evolution called heterochrony.
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5. Heterochrony and Environment in the Evolution of a Colonial

Individual

We shall take the view here that time-sequencing changes in growth and devel-
opment are induced from environmental influences, either somatic internal ones
or external ones, to the colony. This is consistent with the Ergonomic Theory of
Wilson and Bekhemeshev and its allometric space representation due to Oster and
Wilson, as expanded briefly in Sec. 3. The simplest way to include these influences
is with a gradient of the transformation function . Thus, we define a helerochonic
transformation of the Volterra-Hamilton system (2.22)

dz?

dt
dN?

dt

= N?
(5.1a)

+TENINE£ 2 = 0

to be defined by application of ¥ (1st degree homogeneous in N*) such that a new
Volterra-Hamilton system results:

— 1
di =N

dN*
di

(5.1b)
+(T%y + by ++ 8,4, )NI N* £ ANT = F? gradhy)

where A > 0 and
gradiy = g7 (6;9) = gy = ¢ .

Note that (5.1b) is the same as (2.23) except for the gradient.
Now since F? = g, ,N*"N* and F = e“*' F = d5 we can rewrite (5.1b) so that

42zt X . - def da*
W-i-(r;k + 853k + 81y — Q‘Jﬂﬁ)ds T =0 (6.1c)

results, after passage to the natural spray parameter 5 is performed via 5 = A - e**
As an important example, let’s take {(5.1a) to be

dzt

= = Ni
dif* (5.2)
=MW

for n = 2, where T%, = v}, = 0, the ¥ being the Levi-Civita symbols of Sec. 2 for

the F-metric tensor g;; = —;—Biész for

F={(NY™ + (NHH™, m>2 (5.3)
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the so-called mth-root Minkowski norm. Note that ds? = FZ(z, dz) or F (z, %) =
1 holds along the solution curves of the spray associated to (5.2). Choosing

Yv=oN', i=1,2 (5.4)

we compute to oblain dz* = N'dt and

dN? e, Ma2 o2 31 1 N}\™? 232

'E‘i—-l-a](N) +H——1N N4 - AN T oI\ (N)

dN? NP\™2 9
22 Moy o r1a2 g2 Q2 N 132

7 +a2(N)+m_1NN AN _m—l(Nz) (N7)

for an arbitrarily chosen A > 0. We know that (5.5) are geodesics of d5 = £ =
€' F(z, dz). This system has deep meaning in the ecological area (see [4]) but
was studied from the purely Finsler differential geometric point of view by Antonelli
and Shimada {9] who refer to F as the Ecological Finsler Metric. The solutions to
(5.5) are extrema, of the variational problem (fixed end points)

tr -
6| F2.eMdt=0, (5.6a)

to

B dry _
5] F (a:, E:) d5 =0 (5.6b)

[Note that absence of the squared exponent in (5.6b)]. We can see, therefore, that
ds = F holds for trajectories of (5.2) and that d§ = F holds for those of (5.5). Thus,
F = 1, before projective/gradient — change, as well as, F' = 1, after it. This brings
out a very important point about our concept of heferochrony, namely it preserves
division of labour (i.e., F = 1 along trajectories). But, (5.3) is only a special case
of a more general case.

or equivalently,

Theorem {Geodesic Heterochrony):
If l":- ¢ 15 taken to be 7} & for a given n-dimensional norm F (independent of z), then
(5.12) has straight lines as solutions to the associated geodesic spray and (5.1c) are
the equations of geodesics of F = e**' F, provided, % = a; N*.

Note that such '7;:.& are tdentically zero. Applying this theorem to (5.3) with
m = 2 = n we see that real growthk dynamics

2,0 f
A

dt? + dt 0
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maps, via geodesic heterochrony, into {3.13), the growth equation for a dimorphic
symbiant, with k; = 1. For m > 3, we obtain the growth equations for a dimorphic
symbiant wilh strong social interactions. This derives from (56.5) using the definition
of the so-called real growth variables (3.11). The steady-state necessary for their
definition is

Ni= ———— - (5.7)

The interaction coefficients of (5.5) are given by

= a NIy _ m N? mel
o (B s emin ()

. m NZ\™?
Féz = —E-afl ('-]-'v‘]-) .
(5.8)

with I'2,, T3, and T%, obtained from these by interchanging 1 and 2 in the indezing.
The spray curvature tensor D is given by

o N2 m 1 a; N2 m-—1 1
Diy = 5 m(m=2) (Fl‘) N 'D}u=—7m(m"2)(m "N

-1 oy m=2
ay NZ\T ) ay N 1
Phu=-Fmim-2)(51) g Pm=Fre-d(5)

o N2 m=2 1 a1 N2 m=3 1
Dim = Tlm(m—Q) (m) N Dl = —5 m(m=2) (TVT T

(5.9)

All others of the 'D;:H are obtained from these by the index interchange. Note
that the spray curvature vanishes identically if and only if m = 2. Thus, (5.5) is
intrinsically social. But, even more interesting is the question of whether or not it
is projectively equivalent to (5.2). Recall, K¥ivan’s method always gives intrinsically
social inleractions that are lime-sequencing equivalent lo classical (i.e., quadralic)
systems. We can answer this question by direct calculation. First, we compute the

normal form 7 of (5.5)
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-1 y
oy (m+ 1}(m—2) NI\™ (Nl)m
- - -2 A
-0 em-1 |2V gr) termlm
_ 2y M= 1\ m
= — oy B m+D(m-2)] oym N_l) +ay (Nz)
3(m—1) 6 m—1\N N

1 aym(m+1) (N2\"? agm(m — 2) (N1\™H
mE-Ts —\§) *T & (%) -

The rest of the component of 1r; ¢ are obtained by indexing interchange. Now we
compute the Douglas (Projective) tensor K of Sec. 4:

m -2
(m— 2)m{m + 1) N? 1 N'N\™ 1
K == a\m) melm) =
Kl = Mo dmm+ ) [ NN 1T 1
112 = 6 AT N1 2l N2 N2

-1 m-—2
1 {m—2)m(m+1) NZ\T 1 N1 1
Kian = 6 MANT T oem =D 3 ‘N?

(5.11)

S
——
=

.

(5.10)

All others of the components of ICj- ¢t are obtained by indexing interchange. We see
that K is identically zero if and only if m = 2 and that therefore, there does not
ezisi a projective iransformation to the straight-fine dynamics of(5.2) if m > 3. The

reason is, of course, the gradient term on the right-hand side of (5.1b). Moreover,
consider that

: 1 R 1

soforn23,withi9éj;ék,

: 1,
Ty = —gixt — i TN ka1 (5.12)

which will not be generally zero.

Therefore, heterochronic transformation of classical (i.e., quadratic) sysiems do
result in increased complerity (3-way interactions (n > 3) where there were only 2-
way before time-sequencing change) something that is lacking in the Kivan method,
but is necessary for a mathematical theory of evolution by heterochrony in colonical
individuals. Heterochrony can only occur when a direct environmental mfluence
induces 1. The processes we have described creaies an emergent hierarchy, due lo

Antonelli and Bradbury via the theory of the normal form described in the diagram
below.
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(Level three}

dN? =i I T =y ; . ., B
S +TWNIN AN =0 (r;-,, =y S+ SRy — G grad};-,(aﬁ))
+N£Thjk
3
dN’ ; ; ; . :
o (7é + Givma + 6 \NIN® 2 AN' = F grad ()
F=1
Environmental
gradp(m) —
Input

i';'k {rep. of normal form)

!

{class) ¥ (normal form)

// \ e sequence

N F g Is. related interaction
coefficients

{Level two)

1 . - . - 3 . v
%r— + DL NINR £ AN = 0 (T = 7}y + 8imy + 64m;
+ Nimjx — gjn gradp(m))
[
dN’ ‘ i ; Fark 3 S ard z i

T + (fr;k + E;»mk + 5}ij)N-’N + AN? = F? grad’p(m)

F=1

Envirenmental
grad p(m) -

Input

w;k (rep. of the normal form})

1
(class) 7 (normal form}

~INN

time-sequence
B DR A P IS A related interaction
coefficients
(Level one)
AN' ,
Tas PN NF £ AN =0

F=1

Antonelli-Bradbury Hierarehy for Evolution of Complezity

479
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Here, we begin with (say) a classical {i.e., quadratic) dynamics with division of
labour (F = 1), for the colonial individual. This T' defines the normal form = by
(4.2) which has an interaction pattern representative, 1rJ':k. Then a time-sequence
function m is applied and the heterochronic transformation is defined at the next
level by application of the Minkowski F-gradient to yield, by definition,

d’ ' i i i T At i
= (s + Gme + 6pmy )N N¥ £ AN® = F? gradi.(m) . (5.13)
Next, the proper sort of F and m will allow adapiation te eccur in the sense that
f‘;'k- = ”j‘k + 5}?’1’1,& + 6::7"’:' + NimJ'g = Jik gradjp(m) (5.14)

is an interaction pattern for which there exists a Finsler metric function F which is
conserved along solutions v of

d*x' . dzf dx* ;
That is, 4 = F (2, %) <= F = 1 so that division of labour holds along . If
this adaptation is allowed, the level two is defined in the hierarchy. Then, another
environment input grad% m 1s applied to the normal form of (5.13) and simulta-
neously a projective (time-sequencing) change is effected. If adaptation is allowed,
the result defines the next level in the hierarchy, and so on. Equation (5.12) insures
that social complexity increases from level one to two, given it was quadratic to
start. But, it remains an open problem as to just how complexity behaves going
from level two to level three. This is the Hierarchy Problem.

6. Allometric Space and Wagner Geometry

In Sec. 3 we briefly described the Oster and Wilson allometric space representation
of the Ergonomic Theory of colonial organisms. If we consider n separate Gompertz
curves with the same rate parameter A in terms of real-growth variables ' (t) which
solve
d2 i d i
Yix oo, i=1,.. 0 (6.1)

FTERRP™

with initial conditions y'(0) > 0 and d—g’t—ijhg < 0. Conversion to the natural
parameter § via § = B . e~ leads to

= (6.2)
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where § = S48, Smax being adult size and ds = F(z, dz), being size increment,
is assumed independent of £. Thus, Eq. (6.2) has all its solutions constrained by the

division of labor principle because di = —ds so that F (%, cee -"-‘%) =1 if and
only if +F (%, Ceey %) = 1. {There is no assumption that F(—dz) = F(dz),
here.)

Now let ¢(z) be a scalar function of z* and define a semi-projective transforma-
tion of Eq. (6.2) to be

d2y£ ; dy" dyk
a7t G0 Gy = (©3)
where ¢; = Op¢ and
o _ pp. o [ (6.4)

dé

for some constant of integration M. Solutions of Eq. (6.2) are reparametrized to
give solutions of (6.3) via (6.4) (see [12]). The Theory of Wagner Geometry [14,15]
states that Eq. (6.3) has F = ¢? . F = dp along its solutions, that is F (a:, j—;) =1
along solutions 7y of Eq. (6.3). These v are called auio parallels of the Wagner
geomelry. Clearly, they ezhibil the division of labor principle, but they are (almost)
never geodesic of F! This is because the geodesics of F have “curvature” relative
to Wagner autoparallels. That is, according to the geodesic heterochrony theorem
in Sec. b, the geodesics are given as solutions to

d2 yt'
dp?

., dy dy*

+ 8k & Ay _
dp dp (6.5)

: i g G dY '

i F2 L L ,

¢ AR ™

is the Wagner geodesic curvafure vector. If we pass to real-time ¢ and use the
special case ¢ = oz’ and F' is the mth root norm given in Eq. (5.3), then we obtain

Eq. (5.5) with

C2=[ oy (fr_?)m_z(Nz)z_ had N1N2]

m-—1 m-—1
6.6
C‘l — _._..__al E o (NI)Z___ 2 N1N2 ( )
T m-1\N2 m-—1 ’

as the Wagner geodesic curvature vector components. Furthermore, since the Wag-
ner auloparallels have sets of siraight lines in allometric spaces as solulion sels
(i.e., semi-projective transformations only reparametize these straight lines), il is
the curvalure vector C° which warps these siraight lines into honest curved lines
in allometric space, as required by Oster and Wilson (see quote in the caption of
Fig. 5).
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The above argumenis shows that geodesic helerochronic transformation of Gom-
pertz growth in allomelric space resulls generally in new growth curves which are
curved because of the presence of the environmental gradient, gradpm.

Now we shall formulate a concept of heterochronic transformation more general
than geodesic heterochrony. We will restrict curselves to

d
Y = di(y)- ar
where ‘l,[)k Eék¢=¢k56k¢.

(6.7)

Thus, a heterochronic transformation of Eq. (6.2) consists of a pair (¢, C?) with ¢
a scalar function of ¥ and C' depending on y* and dy’/dt and positively 2nd order
homogeneous in the latter, such that the n equations

dy dy’ dy sdy' o dy
a4z + (8 ¢’k) i Tt =C (y, E) (6.8)

hold in terms of real growth variables and real time t. We impose the further
condition on the curvature vector C*:

3 C"— =0, (6.9)

along solutions of Eq. (6.8) where

_ 1 ...
§ij = ¢%9ig = e OO, F? } (6.10)

and ds=F=¢t. F.

The equation (6.9) is equivalent to F (y, %) = Eji; along all solutions of Eq. (6.8)
[11). It is a generalization of the lemma in Sec. 2. (In the remark following the
lemma, C* = 2G* — H{ is the curvature vector of the spray curves relative to norm
F). Note that in terms of the natural parameters Eq. (6.8) is just Eq. {6.3) with
ct (y, g%) affixed to the right-hand side. The point is that #f is possible {o have
division of labour satisfied and still not have the geodesic condition (i.e., extremals
of the F' variational problem). For example, consider

. d
C' = Fj a‘l.}: ; Fij = gir F]
dy" (6.11)
Fij = 0;A; — 8 A, Ai = (¢1 + ¢2) "G
where ¢1 and ¢, are scalar functions of 3*. Then one computes

) dy dy’

i _— i i

¢=¢1+¢2
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Now, if we apply the heterochronic transformation (¢, C¥), the result will not be
geodesics of ¢%1 . I, but division or labour (orthogonality relative to g;; = 18:4; F?)
will still hold. As a concrete example, consider Eq. (5.5) with C' as in Eq. (6.6)
but add B! and B? to C! and C? respectively, where

dyl dy® moy P\" dyz 2
1 — _ (5, _ maoyy 8Y G4 _ L A
B (‘51 m—l) a gt T\ o)\ (dt)
dy' dy? mag \ ("2 (dyt\?
B?=— (8- 2 Y (5 ¥ =
(2 m—l) dt dt+( m—1)(g'ﬂ) (dt) )

Then we obtain a system whose ecological interactions are in terms of #* and

N (de* = ki Nidt, i = 1, 2) are

(6.13)

N’ N2\

o = AV = (VP = GNINE 4 (8 - ) (F) (N?)?
e R (6.14a)
T:)‘N2_02(N2)2—62N1N2+(61—ag)(m) (N2,

Just use the reverse of the substitution (3.11) for real growth variables. The
steady-state necessary for this is (with ky = k = 1)

Nl A(dz — )=
s = 3
o1(6s — ) ™7 + ag{d) — ag) ™1
1(62 — 1) 2(11 2) (6.14b)
2 _ A(él—az)""l
2 =

o (dz — 01)#‘_‘ + a6y — ﬂtz)#:T

Theorem (Antonelli and Lin).

The system {6.14a) has unique positive solution (6.14b) which is globally asymptot-
ically stable in the positive region of (N!, N?}-space. Such a system has geodesic
form if and only if, & = —=4, i £ 7 [4].

m-1

We have also the much deeper result:

Theorem {Antonelli and Shimada):
Almost all trajectories of the geodesic version of (6.14) (m > 3) are Liapunov stable
[9).

The proof of this is to compute the Berwald’s Gauss curvature K for F, m > 3.
It is almost everywhere positive. A corollary is that geodesic heterochrony can resull
in stable caste systems (Antonelli and Lin) with stable biomass production (Antonelli
and Shimada) and yet be highly social (m > 3) (see Sec. 5) in its interaclions. This
is not so for m = 2, because production is unstable and D = 0 = K. Yet (6.14b) is
still globally asymptotically stable [4].
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Let us quote at length the statements of Wilson and Hélldobler [24]:

An example of social homeostasis is provided by the caste systems of the
ant genus Pheidole. Each species of this large cosmopolitan genus has a
characteristic ratio of small-headed minor workers to large-headed major
workers. When the ratio is altered in a particular colony by an excess of
birth or mortality in one of the castes the colony converges back toward the
original ratio within one or two worker generations, extending across one
to three months. The feedback loop is an inhibitory pheromone, so that
the larvae surrounded by an excess of majors curtails growth and tend to
become minors. Those present during a shortage of majors become more
sensitive to juvenile hormone, extend growth, and turn into majors.”

7. Allometric Growth and Heterochrony in Paleontology

We have seen how our concept of a heterochronic transformation converts Gompertz
growth of a colonial individual into a growth process with complicated interactions
between the morphotypes as in (6.14). But, how is this system related to classical

heterochrony as used in paleontology? The answer is that when ¢ = oy, of
mf2
conslants, the trajectories eventually head in direction, tan=! . %: . This is

called the Landsbery direction, in Finsler differential geometry. This was first worked
out for m = 2, the Riemannian case, but follows from results in [9] for m > 3.
Frem a dlfferent. point of view, the global stability of N§ in (6.14) implies that
de* /dt, where z* is log biomass, approaches unique constants as { — ¢ 1, the time of
full growth, while the length of the tangent vector dz'/dt is preserved along growth
paths and so F' = 1 implies size increase dS/dt (S = size) is constant.
Therefore, . )
de! _dr' dS
dt  ds dt
implies dz*/dS, at or near ¢y, the time of full growth {or adult size, S = A)is a
constant times N}. Consequently,

g =MS+D  i=12 ... (7.1)

for suitable constants M*, D', The Egs. (6.14) are autoparallels which conserve
lengths and total energy F. Defining a new time parameter S = 1e* with zf
replacing y* converts (6.14) into the usual autoparallel form. This transformation
leads to S, the arc length, and should not be confused with the Gompertz equa-
tion. The variable y* are not used here. Rather z* is used and so a different time
transformation is needed to obtain standard autoparallel form, because the A term
switches sign in passing from y' to z' variables. So, setting &; = k in {6.14a})

dt kNG

sl T e e, ™
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where
Gij(zg) = "0 - gij(=y) } (1.3)
{gi5(z )NENET? = [(NG)Y™ + (NG)™]™
Then
da? k
EJS:A - Q N02 mqlfm
1 il
1+ () ] o
P
Thus, (6.14b) leads to the Allomeiry (approximation), after rescaling x*(t) with &
equal to the mth-root norm of (alﬁl:r, ag‘%r),
2t~ Q (o)™ .S+ D (7.5)

between z°(t) = {nm*(t) (m‘(t) being total biomass of ith caste accumulated up to
time t} and log of the total size, 5 (for t neart;). That is,

L Yo

W . (C!‘:' S + D (76)

Inm' s

In Paleontology normalized adult sizes can be used so that m} = m% =1, and
50

mm' % (i)™ - 5 + D* (7.7)

holds near adult sizes. The social aspect is clear in the parameter m, also.

If we have performed a heterochronic transformation via ¢ = o;3, we may follow
this by another such, ¥ = ay'. This amounts to replacing o; by a; + o} in (7.6)
and (7.7). If af < 0 but a; + &} > 0, then x} has experienced a neotenic change
from its ancestral form. If &) > 0, then .‘B} has experienced an acceleration from ils
ancestral form [13]. Thus, the generalization we have here represented does indeed
give the usual allometric relations for neoteny and acceleration as they were defined
for the Evolution of fossil forms (13,1).

8. Conclusion

The examples we have given are limited, for our work has only just begun. More
examples are needed, say, the Minkowski norm of Sec. 1 (The Rander’s metric) or
certain others, should be worked out in detail in the near future, in order to define
the geodesic heterochrony (i.e., perfect adaptation). There is also the comparison
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with data on allometric measurements of say, fossil bryozoans. This has been done
in part for the above example (mth-root norm) in Sec. 7. On the other hand, such
data seem at first to be inadequate for verification of our mathematical theory.
Rather, data on development in Ant colonies would seem much more appropriate.
For our model is dynamical and says a lot more about neoteny and other types of
biological heterochreny than mere allometric comparison of z* at or near adult size
(i.e., the stuff of fossil measurements). S. J. Gould has written of the need for a
theory like the above [13] and no one to our knowledge has filled this gap until now.
There is however, the classic work in the field due to Oster and Gould et al [1],
and again we recommend this paper as an excellent introduction to heterochrony
modelling.
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