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We will discuss real or complex matrices, i.e. elements of
matrices are real or complex numbers.

Definition
A matrix of type m × n is a rectangular schema A with m rows
and n columns

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

 ,

where i = 1, . . . ,m and j = 1, . . . ,n. We also use the notation
A = (aij).

In fact, the indices describes the position of the element in the
schema. More precisely, aij is the element of the matrix A,
which is on the i th row and on j th column.
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Example

Consider

A =

(
1 2 −1
3 4 −2

)
.

Then A is a matrix of type

2× 3,

and the element in the first row and second column is

a12 = 2.
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The matrix of type 1× n of the form (ai1,ai2, . . . ,ain) is
called the i th row of the matrix.
The matrix of type m × 1 of the form

a1j
a2j
...

amj


is called the j th column of the matrix.
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Example
Again, consider

A =

(
1 2 −1
3 4 −2

)
.

The second row (i = 2) is

(a21,a22,a23) = (3,4,−2).

The first column (j = 1) is (
1
3

)
.
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If m = n, then we speak about a square matrix. The
number m = n is called the order of the matrix.
The main diagonal is (a11,a22, . . . ,ann).

Example

The matrix

B =

1 2 3
3 4 6
7 8 9


is square matrix of order 3 and its main diagonal is (1,4,9).
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An upper triangular matrix is the matrix A such that
everything below the diagonal is zero.
Analogously, a lower triangular matrix is the matrix A such
that everything above the diagonal is zero.
The zero matrix is the matrix (of arbitrary type)

O =


0 0 . . . 0
0 0 . . . 0
...
0 0 . . . 0

 .
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The identity matrix or the unit matrix is the (always square)
matrix

E =


1 0 . . . 0
0 1 . . . 0
...
0 0 . . . 1

 .

Two matrices are equal if and only if they are of the same
type, and the corresponding elements are identical.
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Example (
1 2
3 4

)
6=
(

1 4
0 3

)
(

1 0
0 sin2 x + cos2 x

)
=

(
sin2 x + cos2 x 0

0 1

)
for each x ∈ R.



Matrices (Simple) Matrix operation Properties of (Simple) Operations Matrix Multiplication

A symmetric matrix is a matrix A = (aij) of order n such
that aij = aji for all i, j = 1, . . . ,n.
An antisymmetric matrix is a matrix A = (aij) of order n
such that aij = −aji for all i, j = 1, . . . ,n.

Example

Consider

C =

1 2 5
2 4 6
5 6 7

 , D =

 0 2 1
−2 0 −6
−1 6 0


Which of them is symmetric and which of them is
antisymmetric?
C is symmetric, D is antisymmetric
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Scalar Multiplication

Scalar multiplication is defined for arbitrary matrix.
The product is obtained from multiplying each entry of the
matrix by the scalar.

Definition
Let c be a scalar and A = (aij) a matrix. Then

cA = (caij).

Example

5 ·
(

1 2 5
3 4 6

)
=

(
5 10 25

15 20 30

)
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Matrix Addition

Matrix addition is defined for matrices of the same type.
The sum is obtained by adding the corresponding entries
of the matrices.

Definition
Let A = (aij), B = (bij) be matrices of the same type. Then

A + B = (aij + bij).

Example (
1 2
3 4

)
+

(
0 −4
3 −1

)
=

(
1 −2
6 3

)
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Matrices of different types cannot be added.

Example

The expression (
1 2
3 4

)
+

(
0 2 0
4 −1 −2

)
makes no sense.
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Subtracting

Matrix subtraction is defined for matrices of the same type.
The difference is obtained by subtraction the
corresponding entries of the matrices.

Definition
Let A = (aij), B = (bij) be matrices of the same type. Then

A− B = A + (−1)B = (aij − bij).

Clearly, matrices of different types cannot be subtracted.
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Transposition

We can transpose a matrix of arbitrary type.

Definition

Let A be a matrix of type m × n. The transpose AT is the matrix
of type n ×m whose columns are the rows of A in the same
order.

Example

Consider A =

 1 2
3 4
5 6

 . Then AT =

(
1 3 5
2 4 6

)
.
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Theorem
Let A be a square matrix. Then:

A is symmetric, if A = AT ,
A is anti–symmetric, if A = −AT .

Moreover, each square matrix A can be written as a sum of
symmetric matrix As and anti–symmetric matrix Aas, where

As =
1
2

(
A + AT

)
, Aas =

1
2

(
A− AT

)
.

Example (
1 3
2 4

)
=

(
1 5

2
5
2 4

)
+

(
0 1

2
−1

2 0

)
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Let A,B,C are matrices and c,d scalars. Suppose the
expressions on both sides are defined. There are the following
statements:

Theorem
A + B = B + A (commutativity)
A + (B + C) = (A + B) + C (associativity)
A + O = O + A = A
A + (−A) = O
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Theorem
(c + d)A = cA + dA
c(A + B) = cA + cB
c(dA) = (cd)A
1A = A
0A = O

Theorem

(AT )T = A
(A + B)T = AT + BT

(cA)T = cAT
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Example

Let A =

(
1 2
3 4

)
, B =

(
−1 0
−2 3

)
. Find AT − B + 2A.

We have

AT − B + 2A =

(
1 3
2 4

)
−
(
−1 0
−2 3

)
+

(
2 4
6 8

)
=

(
4 7

10 9

)
.
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Definition
Let A = (aij) be a matrix of type m × n and B = (bk`) be a
matrix of type n × p. Put

ci` :=
n∑

k=1

aikbk`

for i = 1, . . . ,m and ` = 1, . . . ,p.
The matrix C = (ci`) of type m × p is called a product of the
matrix A with the matrix B, tj. C = AB.
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The matrix multiplication is only possible if the number of
columns of the first matrix equals the number of rows of the
second matrix.
The element of the product of two matrix on the position
(i, j) is the dot product of the i th row of the first matrix and
the j th column of the second matrix.
Shortly said: i th row times j th column.
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Example

Compute AB and BA, where A =

(
0 1
2 3

)
, B =

(
4 5 6
7 8 9

)
.

Observation
Since A is of type 2× 2 and B is of type 2× 3, then

AB exists and is of type 2× 3,
BA does not exist.



Matrices (Simple) Matrix operation Properties of (Simple) Operations Matrix Multiplication

Example

AB =

(
0 1
2 3

)(
4 5 6
7 8 9

)
=

(
0 · 4 + 1 · 7 0 · 5 + 1 · 8 0 · 6 + 1 · 9
2 · 4 + 3 · 7 2 · 5 + 3 · 8 2 · 6 + 3 · 9

)
=

(
7 8 9

29 34 39

)
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Example

Compute AB and BA, where A =

(
0 1
2 3

)
, B =

(
2 3
−1 2

)
.

Observation
We can always multiply square matrices of fixed order r , and
the result is again of order r . In our situation: r = 2. Thus both
products exist and are of order 2.
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Example

AB =

(
0 1
2 3

)(
2 3
−1 2

)
=

(
−1 2
1 12

)

BA =

(
2 3
−1 2

)(
0 1
2 3

)
=

(
6 11
4 5

)

Observation
AB 6= BA, i.e. the multiplication is not commutative.
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Example

Compute AB and BA, where A =
(
−1 1 2

)
(of type 1× 3),

B =

 2
0
3

 (of type 3× 1).

Observation
AB is of type 1× 1, i.e. a scalar
BA is of type 3× 3
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Example

AB =
(
−1 1 2

) 2
0
3

 = −1 · 2 + 1 · 0 + 2 · 3 =
(

4
)

BA =

 2
0
3

( −1 1 2
)
=

 −2 2 4
0 0 0
−3 3 6


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In general, AB 6= BA! In fact, the multiplication is really
strange...

Example (
0 1
0 0

)(
1 0
0 0

)
=

(
0 0
0 0

)
(

1 0
0 0

)(
0 1
0 0

)
=

(
0 1
0 0

)
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Let A,B,C are matrices and c,d scalars. Suppose the
expressions on both sides are defined. There is the following
statement:

Theorem
A(BC) = (AB)C (associtativity)
(A + B)C = AC + BC and C(A + B) = CA + CB
(distributivity)
AE = EA = A
AO = OA = O
(dA)B = A(dB) = d(AB)

(AB)T = BT AT

Definition

In particular, if A is square, then we write A2 = AA, A3 = AAA,
and so on, where we always use the matrix multiplication.
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