KO KA KO KERKER KONG

UMB 551I Linear algebra

Lenka Zalabová

We follow the Czech version of the course (UMB 551 Lineární algebra) by Jan Eisner. The slides in Czech are available on fix.prf.jcu.cz/ $\tilde{ }$ eisner/lock/UMB-551/.

8. října 2014

KORK (FRAGE) KEY GRAN

Obsah

- 2 [\(Simple\) Matrix operation](#page-19-0)
- 3 [Properties of \(Simple\) Operations](#page-30-0)

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

- 2 [\(Simple\) Matrix operation](#page-19-0)
- [Properties of \(Simple\) Operations](#page-30-0)
- **[Matrix Multiplication](#page-36-0)**

We will discuss real or complex matrices, i.e. elements of matrices are real or complex numbers.

Definition

A *matrix of type* $m \times n$ *is a rectangular schema A with m rows* and *n* columns

$$
A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},
$$

where $i = 1, \ldots, m$ and $j = 1, \ldots, n$. We also use the notation $A = (a_{ii})$.

In fact, the indices describes the position of the element in the schema. More precisely, *aij* is the element of the matrix *A*, which is on the *i th* row and on *j th* column.**KORKAR KERKER E VOOR**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example

Consider

$$
A=\begin{pmatrix}1&2&-1\\3&4&-2\end{pmatrix}.
$$

Then *A* is a matrix of type

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example

Consider

$$
A=\begin{pmatrix}1&2&-1\\3&4&-2\end{pmatrix}.
$$

Then *A* is a matrix of type

 2×3 .

and the element in the first row and second column is

Simple) Matrix operation [Properties of \(Simple\) Operations](#page-30-0) [Matrix Multiplication](#page-36-0)
 $\frac{1}{200}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example

Consider

$$
A=\begin{pmatrix}1&2&-1\\3&4&-2\end{pmatrix}.
$$

Then *A* is a matrix of type

 2×3 .

and the element in the first row and second column is

$$
a_{12}=2.
$$

- The matrix of type $1 \times n$ of the form $(a_{i1}, a_{i2}, \ldots, a_{in})$ is called the *i th row of the matrix*.
- The matrix of type $m \times 1$ of the form

$$
\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

is called the *j th column of the matrix*.

KO K K Ø K K E K K E K Y S K Y K K K K K

Example

Again, consider

$$
A=\begin{pmatrix}1&2&-1\\3&4&-2\end{pmatrix}.
$$

The second row $(i = 2)$ is

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Example

Again, consider

$$
A=\begin{pmatrix}1&2&-1\\3&4&-2\end{pmatrix}.
$$

The second row $(i = 2)$ is

$$
\left(a_{21},a_{22},a_{23}\right)=(3,4,-2).
$$

The first column $(j = 1)$ is

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Example

Again, consider

$$
A=\begin{pmatrix}1&2&-1\\3&4&-2\end{pmatrix}.
$$

The second row $(i = 2)$ is

$$
\left(a_{21},a_{22},a_{23}\right)=(3,4,-2).
$$

The first column $(j = 1)$ is

$$
\begin{pmatrix} 1 \\ 3 \end{pmatrix}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \bullet If $m = n$, then we speak about a *square matrix*. The number $m = n$ is called the *order of the matrix*.
- The *main diagonal* is $(a_{11}, a_{22}, \ldots, a_{nn})$.

- \bullet If $m = n$, then we speak about a *square matrix*. The number $m = n$ is called the *order of the matrix*.
- The *main diagonal* is $(a_{11}, a_{22}, \ldots, a_{nn})$.

Example The matrix $B =$ $\sqrt{ }$ \mathcal{L} 1 2 3 3 4 6 7 8 9 \setminus $\overline{1}$ is square matrix of order 3 and its main diagonal is (1, 4, 9).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

- An *upper triangular matrix* is the matrix *A* such that everything below the diagonal is zero.
- Analogously, a *lower triangular matrix* is the matrix *A* such that everything above the diagonal is zero.
- The *zero matrix* is the matrix (of arbitrary type)

$$
O = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & 0 \end{pmatrix}
$$

.

KORK ERKER ADAM ADA

The *identity matrix* or the *unit matrix* is the (always square) matrix

$$
E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & 1 \end{pmatrix}
$$

.

KORKARYKERKE PORCH

Two matrices are equal if and only if they are of the same type, and the corresponding elements are identical.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Example

$$
\begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 1 & 4 \ 0 & 3 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 0 \ 0 & \sin^2 x + \cos^2 x \end{pmatrix} = \begin{pmatrix} \sin^2 x + \cos^2 x & 0 \ 0 & 1 \end{pmatrix}
$$
for each $x \in \mathbb{R}$.

KORK ERKER ADAM ADA

- A *symmetric matrix* is a matrix $A = (a_{ii})$ of order *n* such that $a_{ii} = a_{ii}$ for all $i, j = 1, \ldots, n$.
- An *antisymmetric matrix* is a matrix $A = (a_{ij})$ of order *n* such that $a_{ij} = -a_{ji}$ for all $i, j = 1, \ldots, n$.

- A *symmetric matrix* is a matrix $A = (a_{ii})$ of order *n* such that $a_{ii} = a_{ii}$ for all $i, j = 1, \ldots, n$.
- An *antisymmetric matrix* is a matrix $A = (a_{ij})$ of order *n* such that $a_{ij} = -a_{ji}$ for all $i, j = 1, \ldots, n$.

Example

Consider

$$
C=\begin{pmatrix}1&2&5\\2&4&6\\5&6&7\end{pmatrix},\ \ D=\begin{pmatrix}0&2&1\\-2&0&-6\\-1&6&0\end{pmatrix}
$$

Which of them is symmetric and which of them is antisymmetric?

- A *symmetric matrix* is a matrix $A = (a_{ii})$ of order *n* such that $a_{ii} = a_{ii}$ for all $i, j = 1, \ldots, n$.
- An *antisymmetric matrix* is a matrix $A = (a_{ij})$ of order *n* such that $a_{ij} = -a_{ji}$ for all $i, j = 1, \ldots, n$.

Example

Consider

$$
C=\begin{pmatrix}1&2&5\\2&4&6\\5&6&7\end{pmatrix},\ \ D=\begin{pmatrix}0&2&1\\-2&0&-6\\-1&6&0\end{pmatrix}
$$

Which of them is symmetric and which of them is antisymmetric? *C* is symmetric, *D* is antisymmetric

2 [\(Simple\) Matrix operation](#page-19-0)

[Properties of \(Simple\) Operations](#page-30-0)

[Matrix Multiplication](#page-36-0)

K ロ → K 個 → K 君 → K 君 → 「君 → り Q Q →

KORKARA KERKER DAGA

Scalar Multiplication

- Scalar multiplication is defined for arbitrary matrix.
- The product is obtained from multiplying each entry of the matrix by the scalar.

Definition

Let *c* be a scalar and $A = (a_{ii})$ a matrix. Then

 $cA = (ca_{ii})$.

Scalar Multiplication

- Scalar multiplication is defined for arbitrary matrix.
- The product is obtained from multiplying each entry of the matrix by the scalar.

Definition

Let *c* be a scalar and $A = (a_{ii})$ a matrix. Then

$$
cA=(ca_{ij}).
$$

Example

$$
5 \cdot \left(\begin{array}{rrr} 1 & 2 & 5 \\ 3 & 4 & 6 \end{array}\right) = \left(\begin{array}{rrr} 5 & 10 & 25 \\ 15 & 20 & 30 \end{array}\right)
$$

- Matrix addition is defined for matrices of the same type.
- The sum is obtained by adding the corresponding entries of the matrices.

Definition

Let $A = (a_{ij}), B = (b_{ij})$ be matrices of the same type. Then

$$
A+B=(a_{ij}+b_{ij}).
$$

KEL KALEY KEY E NAG

- Matrix addition is defined for matrices of the same type.
- The sum is obtained by adding the corresponding entries of the matrices.

Definition

Let $A = (a_{ii})$, $B = (b_{ii})$ be matrices of the same type. Then

$$
A+B=(a_{ij}+b_{ij}).
$$

Example $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -4 \\ 3 & -1 \end{pmatrix}$ 3 −1 $= \left(\begin{array}{cc} 1 & -2 \\ 6 & 3 \end{array}\right)$

KOD KOD KED KED E VOOR

Matrices of different types cannot be added.

Example

The expression

$$
\left(\begin{array}{rrr}1 & 2 \\ 3 & 4\end{array}\right) + \left(\begin{array}{rrr}0 & 2 & 0 \\ 4 & -1 & -2\end{array}\right)
$$

makes no sense.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- Matrix subtraction is defined for matrices of the same type.
- The difference is obtained by subtraction the corresponding entries of the matrices.

Definition

Let $A = (a_{ij}), B = (b_{ij})$ be matrices of the same type. Then

$$
A - B = A + (-1)B = (a_{ij} - b_{ij}).
$$

KORK ERKER ADAM ADA

Clearly, matrices of different types cannot be subtracted.

KEL KALEY KEY E NAG

Transposition

• We can transpose a matrix of arbitrary type.

Definition

Let *A* be a matrix of type $m \times n$. The transpose A^T is the matrix of type $n \times m$ whose columns are the rows of A in the same order.

KEL KALEY KEY E NAG

Transposition

• We can transpose a matrix of arbitrary type.

Definition

Let *A* be a matrix of type $m \times n$. The transpose A^T is the matrix of type $n \times m$ whose columns are the rows of A in the same order.

Example

Consider
$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}
$$
. Then $A^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$.

KEL KALEY KEY E NAG

Theorem

Let A be a square matrix. Then:

- *A* is symmetric, if $A = A^T$,
- *A* is anti–symmetric, if $A = -A^T$.

Moreover, each square matrix *A* can be written as a sum of symmetric matrix *A^s* and anti–symmetric matrix *Aas*, where

$$
A_s = \frac{1}{2} \left(A + A^T \right), \quad A_{as} = \frac{1}{2} \left(A - A^T \right).
$$

Theorem

Let A be a square matrix. Then:

- *A* is symmetric, if $A = A^T$,
- *A* is anti–symmetric, if $A = -A^T$.

Moreover, each square matrix *A* can be written as a sum of symmetric matrix *A^s* and anti–symmetric matrix *Aas*, where

$$
A_s = \frac{1}{2} \left(A + A^T \right), \quad A_{as} = \frac{1}{2} \left(A - A^T \right).
$$

[\(Simple\) Matrix operation](#page-19-0)

[Properties of \(Simple\) Operations](#page-30-0)

KORK (FRAGE) KEY GRAN

KEL KALEY KEY E NAG

Let *A*, *B*, *C* are matrices and *c*, *d* scalars. Suppose the expressions on both sides are defined. There are the following statements:

Theorem

- \bullet $A + B = B + A$ *(commutativity)*
- $A + (B + C) = (A + B) + C$ (associativity)

$$
\bullet \ \ A + O = O + A = A
$$

$$
\bullet \ \ A + (-A) = O
$$

KORKARYKERKE PORCH

Theorem

- \bullet $(c+d)A = cA + dA$
- $c(A + B) = cA + cB$
- \bullet *c*(*dA*) = (*cd*)*A*
- $1A = A$

$$
\bullet\ \ 0A=O
$$

Theorem

- \bullet $(c+d)A = cA + dA$
- $c(A + B) = cA + cB$
- \bullet *c*(*dA*) = (*cd*)*A*
- \bullet 1*A* = *A*
- \bullet 0*A* = *O*

Theorem

$$
(\mathbf{A}^T)^T = \mathbf{A}
$$

•
$$
(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T
$$

$$
\bullet \hspace{2mm} (cA)^{T} = cA^{T}
$$

KORKARA KERKER DAGA

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Example

Let
$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$$
, $B = \begin{pmatrix} -1 & 0 \\ -2 & 3 \end{pmatrix}$. Find $A^T - B + 2A$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Example

Let
$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$$
, $B = \begin{pmatrix} -1 & 0 \\ -2 & 3 \end{pmatrix}$. Find $A^T - B + 2A$.
We have

$$
AT - B + 2A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ -2 & 3 \end{pmatrix} + \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}
$$

$$
= \begin{pmatrix} 4 & 7 \\ 10 & 9 \end{pmatrix}.
$$

K ロ → K 個 → K 君 → K 君 → 「君 → り Q Q →

- 2 [\(Simple\) Matrix operation](#page-19-0)
- **[Properties of \(Simple\) Operations](#page-30-0)**

KEL KALEY KEY E NAG

Definition

Let $A = (a_{ii})$ be a matrix of type $m \times n$ and $B = (b_{k\ell})$ be a matrix of type $n \times p$. Put

$$
c_{i\ell} := \sum_{k=1}^n a_{ik} b_{k\ell}
$$

for $i = 1, ..., m$ and $\ell = 1, ..., p$. The matrix $C = (c_{i\ell})$ of type $m \times p$ is called a product of the matrix *A* with the matrix *B*, tj. $C = AB$.

- The matrix multiplication is only possible if the number of columns of the first matrix equals the number of rows of the second matrix.
- The element of the product of two matrix on the position (i, j) is the dot product of the ith row of the first matrix and the *j th* column of the second matrix.

KORK ERKER ADAM ADA

Shortly said: *i th* row times *j th* column.

KORK (FRAGE) KEY GRAN

Example

Compute *AB* and *BA*, where
$$
A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}
$$
, $B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

Observation

Since A is of type 2×2 *and B is of type* 2×3 *, then*

- AB exists and is of type 2×3 ,
- *BA does not exist.*

KID KARA KE KA E KO GO

Example

$$
AB = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}
$$

= $\begin{pmatrix} 0 \cdot 4 + 1 \cdot 7 & 0 \cdot 5 + 1 \cdot 8 & 0 \cdot 6 + 1 \cdot 9 \\ 2 \cdot 4 + 3 \cdot 7 & 2 \cdot 5 + 3 \cdot 8 & 2 \cdot 6 + 3 \cdot 9 \end{pmatrix}$
= $\begin{pmatrix} 7 & 8 & 9 \\ 29 & 34 & 39 \end{pmatrix}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Example

Compute *AB* and *BA*, where
$$
A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}
$$
, $B = \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$.

Observation

We can always multiply square matrices of fixed order r, and the result is again of order r. In our situation: r = 2*. Thus both products exist and are of order* 2*.*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example

$$
AB = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & 12 \end{pmatrix}
$$

$$
BA = \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 11 \\ 4 & 5 \end{pmatrix}
$$

Observation

 $AB \neq BA$, *i.e.* the multiplication is not commutative.

KEL KALEY KEY E NAG

Example

Compute AB and BA, where $A = \begin{pmatrix} -1 & 1 & 2 \end{pmatrix}$ (of type 1×3), $B =$ $\sqrt{ }$ \mathcal{L} 2 0 3 \setminus (of type 3×1).

Observation

- *AB is of type* 1 × 1*, i.e. a scalar*
- \bullet *BA is of type* 3×3

Example

$$
AB = \begin{pmatrix} -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} = -1 \cdot 2 + 1 \cdot 0 + 2 \cdot 3 = \begin{pmatrix} 4 \end{pmatrix}
$$

$$
BA = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} \begin{pmatrix} -1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 2 & 4 \\ 0 & 0 & 0 \\ -3 & 3 & 6 \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

KORK ERKER ADAM ADA

In general, $AB \neq BA$! In fact, the multiplication is really strange...

Example $\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

KEL KALEY KEY E NAG

Let *A*, *B*, *C* are matrices and *c*, *d* scalars. Suppose the expressions on both sides are defined. There is the following statement:

Theorem

- *A*(*BC*) = (*AB*)*C (associtativity)*
- \bullet $(A + B)C = AC + BC$ and $C(A + B) = CA + CB$ *(distributivity)*
- $A = \overline{A} = \overline{A}$
- \bullet $AO = OA = O$

$$
\bullet\,\,(dA)B=A(dB)=d(AB)
$$

 $(AB)^{T} = B^{T}A^{T}$

Let *A*, *B*, *C* are matrices and *c*, *d* scalars. Suppose the expressions on both sides are defined. There is the following statement:

Theorem

- *A*(*BC*) = (*AB*)*C (associtativity)*
- $(A + B)C = AC + BC$ and $C(A + B) = CA + CB$ *(distributivity)*
- \bullet $AF = FA = A$
- \bullet $AO = OA = O$

$$
\bullet\ (dA)B=A(dB)=d(AB)
$$

$$
\bullet \ (AB)^{T} = B^{T}A^{T}
$$

Definition

In particular, if *A* is square, then we write $A^2 = AA$, $A^3 = AAA$, and so on, where we always use the matrix multiplication.