Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equati

UMB 5511 Linear algebra

Lenka Zalabová

We follow the Czech version (UMB 551 Lineární algebra) by Jan Eisner available on fix.prf.jcu.cz/~eisner/lock/UMB-551/

25. listopadu 2014

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Inverse of a matrix	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations
Obsah				

- 3 Adjugate matrices
- Solving Linear Systems

Inverse of a matrix ●○○	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations

Motivation:

- In \mathbb{R} , each non-zero real number *a* has its inverse $a^{-1} = \frac{1}{a}$ for the multiplication such that $a^{-1} \cdot a = 1$.
- Consider square matrices of a fixed order. Then we can multiply these matrices as well, and the role of 1 has the identity matrix, i.e. EA = AE = A.
- There is a natural question, whether there is also some 'inverse' for multiplication of matrices. In other words, for a matrix *A*, is there a matrix *A*⁻¹ such that *A*⁻¹*A* = *E*?

(日) (日) (日) (日) (日) (日) (日)

Inverse of a matrix ○●○	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations

Definition

Let *A* be a square matrix of order *n*. Then the matrix A^{-1} satisfying $A^{-1}A = E$ and $AA^{-1} = E$ is called an *inverse of the matrix A*.

- Clearly, A^{-1} is a square matrix of order *n*.
- Inverse of a matrix does not have to exist.
- If there is an inverse A^{-1} of a matrix A, then A is called invertible.

(日) (日) (日) (日) (日) (日) (日)

Inverse of a matrix ○○●	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations

Theorem

Let A be a square matrix of order n. Then there exists inverse A^{-1} of the matrix A if and only if A is regular (i.e. if and only is $|A| \neq 0$ which occurs if and only if r(A) = n).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Inverse of a matrix ○○●	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations

Theorem

Let A be a square matrix of order n. Then there exists inverse A^{-1} of the matrix A if and only if A is regular (i.e. if and only is $|A| \neq 0$ which occurs if and only if r(A) = n).

(日) (日) (日) (日) (日) (日) (日)

Let A, B be regular square matrices of order n.

•
$$(A^{-1})^{-1} = A$$
,
• $|A^{-1}| = \frac{1}{|A|}$,
• $(A^{-1})^{T} = (A^{T})^{-1}$,
• $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$

Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
	0000			

Algorithm for finding the inverse of a matrix:

- Write the matrix A and the identity matrix E next to each other. Thus we get a matrix (A|E) of type n × 2n.
- Find the row echelon form of the matrix (*A*|*E*) using elementary row transformations.
- Use the 'backwards' elimination (i.e. elimination from the bottom and right) to transform the left matrix into the identity matrix.

(日) (日) (日) (日) (日) (日) (日)

• Then the right matrix is the inverse A⁻¹.

Inverse of a matrix A	lgorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
000	000			

Algorithm for finding the inverse of a matrix:

- Write the matrix A and the identity matrix E next to each other. Thus we get a matrix (A|E) of type n × 2n.
- Find the row echelon form of the matrix (*A*|*E*) using elementary row transformations.
- Use the 'backwards' elimination (i.e. elimination from the bottom and right) to transform the left matrix into the identity matrix.
- Then the right matrix is the inverse A^{-1} .

We have

$$(A|E) \sim \cdots \sim \left(E|A^{-1}\right).$$

Clearly, if we get a zero row (in the left matrix) during the computation, then the inverse matrix does not exists.

Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
	0000			

Find the inverse to the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 6 \end{pmatrix}$$
.

nverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
	0000			

Find the inverse to the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 6 \end{pmatrix}$$
.

Firstly, we find the row echelon form:

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 2 & 3 & -1 & | & 0 & 1 & 0 \\ 1 & -1 & 6 & | & 0 & 0 & 1 \end{pmatrix} \sim \\ \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & -2 & 5 & | & -1 & 0 & 1 \end{pmatrix} \sim \\ \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -5 & 2 & 1 \end{pmatrix}.$$

Inverse of a matrix	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations

Now, we find the diagonal form of the left matrix:

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & -5 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | & -4 & 2 & 1 \\ 0 & 1 & 0 & | & 3 & -5 & -3 \\ 0 & 0 & -1 & | & -5 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & -17 & 7 & 4 \\ 0 & 1 & 0 & | & 3 & -5 & -3 \\ 0 & 0 & -1 & | & -5 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & -17 & 7 & 4 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{pmatrix}.$$

Inverse of a matrix	Algorithm ○○○●	Adjugate matrices	Solving Linear Systems	Matrix equations

We get

$${\mathsf A}^{-1}=\left(egin{array}{ccc} -17 & 7 & 4 \ 13 & -5 & -3 \ 5 & -2 & -1 \end{array}
ight).$$

Is the result correct?

Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
	0000			

We get

$${\cal A}^{-1}=\left(egin{array}{cccc} -17 & 7 & 4\ 13 & -5 & -3\ 5 & -2 & -1\ \end{array}
ight).$$

Is the result correct? We compute $A \cdot A^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \end{pmatrix} \begin{pmatrix} -17 & 7 & 4 \\ 13 & -5 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

$$\begin{pmatrix} 2 & 3 & -1 \\ 1 & -1 & 6 \end{pmatrix} \begin{pmatrix} 13 & -3 & -3 \\ 5 & -2 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

<ロ> < 団> < 団> < 豆> < 豆> < 豆 < つへの</p>

Inverse of a matrix figeritini	Aujugale mainces	Solving Linear Systems	Matrix equations
	•00		

Definition

An *adjugate matrix* of the square matrix *A* (of order *n*) is the matrix

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & & & \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

i.e. the transpose of the matrix of algebraic complements.

Inverse of a matrix Algorithi	n Adjugate matrices	Solving Linear Systems	Matrix equations
	000		

Definition

An *adjugate matrix* of the square matrix *A* (of order *n*) is the matrix

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & & & \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

i.e. the transpose of the matrix of algebraic complements.

Theorem

Let A be a regular matrix. Then

$$A^{-1}=\frac{1}{|A|}\cdot A^*.$$

Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
		000		

Using the adjugate matrix, find A^{-1} for

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

.

Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
		000		

Using the adjugate matrix, find A^{-1} for

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

We have

Inverse of a matrix	Algorithm 0000	Adjugate matrices ○○●	Solving Linear Systems	Matrix equations

Then we have $= \left(\begin{array}{ccc} 1 & 1 & -1 \\ -2 & 0 & 2 \\ 1 & -1 & 1 \end{array} \right)$

and we compute

$$|A| = 1 + 2 + 0 - 1 - 0 - 0 = 2.$$

All together,

$$A^{-1} = rac{1}{2} \left(egin{array}{ccc} 1 & 1 & -1 \ -2 & 0 & 2 \ 1 & -1 & 1 \end{array}
ight).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Inverse of a matrix	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations

Consider the system Ax = b, where A is square matrix of order

n and
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

If A is regular, then the system has exactly one solution, and we can find it as follows:

• Multiply the equality Ax = b by the matrix A^{-1} from the left.

(日) (日) (日) (日) (日) (日) (日)

- We get $A^{-1}Ax = A^{-1}b$ and we know $A^{-1}A = E$
- Thus the solution is $x = A^{-1}b$.

Invers	se of a matrix	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations
	Example				
	Using inver	se of the m	atrix of the syste	m, solve the system	n
		X	$x_1 + x_2 + x_3 =$	2	
		2x x	$x_1 + 3x_2 - x_3 = x_1 - x_2 + 6x_3 = x_1 - x_2 + x_2 + x_3 = x_1 - x_2 + x_2 + x_3 = x_1 - x_2 + x_2 + x_2 + x_3 = x_1 - x_2 + x_2 + x_3 = x_1 + x_2 + x_2 + x_3 + x_3 = x_1 + x_2 + x_2 +$	—3. 14	

nver:	se of a matrix	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equatio
	Example Using inv	erse of the	matrix of the sys	stem, solve the syst	tem
		2	$ \begin{aligned} x_1 + x_2 + x_3 \\ 2x_1 + 3x_2 - x_3 \\ x_1 - x_2 + 6x_3 \end{aligned} $	= 2 = -3. = 14	
	We have	$A = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 3 & -1 \\ -1 & 6 \end{pmatrix}, b$	$=\begin{pmatrix} 2\\ -3\\ 14 \end{pmatrix}$ and we	e know
	from abov	ve that A^{-1}	$= \begin{pmatrix} -17 & 7\\ 13 & -5\\ 5 & -2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -1 \end{pmatrix}$. Then we g	et
	x = A	$A^{-1}b = \left(\begin{array}{c} -1 \\ -1 \end{array}\right)^{-1}$	$ \begin{array}{ccc} -17 & 7 & 4 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right) $	$\begin{pmatrix} 2\\ -3\\ 14 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 2 \end{pmatrix}$).

A *matrix equation* is an equation in which a variable stands for a matrix. There are the following types of situations:

- *A* + *X* = *B*, where *X* unknown matrix and *A*, *B*, *X* are of the same type.
- *AX* = *B* or *XA* = *B*, where *X* is unknown matrix and *AX* or *XA* is defined.
- AXB = C, where X is unknown matrix and AXB is defined.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

nverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
000				00000

• *A* + *X* = *B*: We simply subtract *A* from both sides of equations.

Inverse of a matrixAlgorithmAdjugate matricesSolving Linear SystemsMatrix equations000000000000000000000

- *A* + *X* = *B*: We simply subtract *A* from both sides of equations.
- AX = B: It depends on the regularity of the matrix A. If A is regular, then there is the inverse A⁻¹, and we multiply the equation by A⁻¹ from left (or from right) to get A⁻¹AX = A⁻¹B = X (or XAA⁻¹ = BA⁻¹ = X). If the matrix is not regular, we have to use different methods, e.g. to compute explicitly the product AX or XA to get a system of linear equations such that the unknowns are the elements of X.

(ロ) (同) (三) (三) (三) (○) (○)

Inverse of a matrix Algorithm Adjugate matrices Solving Linear Systems

Matrix equations

- A + X = B: We simply subtract A from both sides of equations.
- AX = B: It depends on the regularity of the matrix A. If A is regular, then there is the inverse A⁻¹, and we multiply the equation by A⁻¹ from left (or from right) to get A⁻¹AX = A⁻¹B = X (or XAA⁻¹ = BA⁻¹ = X). If the matrix is not regular, we have to use different methods, e.g. to compute explicitly the product AX or XA to get a system of linear equations such that the unknowns are the elements of X.
- AXB = C: It depends on the regularity of matrices A and B. If both are regular, the we find inverses A⁻¹ and B⁻¹, and multiply the equation by A⁻¹ from the left and by B⁻¹ from the right to get A⁻¹AXBB⁻¹ = A⁻¹CB⁻¹ = X. We will not solve here equations such that at leat one of the matrices A and B is not regular.

Inverse of a matrix	Algorithm 0000	Adjugate matrices	Solving Linear Systems	Matrix equations

Solve the equation 3A + 2X = C - 2B, where:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 6 & -3 \end{pmatrix}, C = \begin{pmatrix} 5 & 10 & 21 \\ 4 & 15 & 15 \end{pmatrix}.$$

0000 000 000 000	lions

Solve the equation 3A + 2X = C - 2B, where:

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ -2 & 1 & 3 \end{array}\right), B = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 2 & 6 & -3 \end{array}\right), C = \left(\begin{array}{rrr} 5 & 10 & 21 \\ 4 & 15 & 15 \end{array}\right).$$

We get 2X = C - 2B - 3A, and thus $X = \frac{1}{2}(C - 2B - 3A)$. We compute

$$X = \frac{1}{2} \left[\begin{pmatrix} 5 & 10 & 21 \\ 4 & 15 & 15 \end{pmatrix} - 2 \begin{pmatrix} 3 & 1 & 1 \\ 2 & 6 & -3 \end{pmatrix} - 3 \begin{pmatrix} 1 & 2 & 3 \\ -2 & 1 & 3 \end{pmatrix} \right]$$
$$= \begin{pmatrix} -2 & 1 & 5 \\ 3 & 0 & 6 \end{pmatrix}.$$

Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
				00000

Solve the equation AX + 2B = BX - 2C, where

$$A = \begin{pmatrix} -1 & 2 \\ 1 & -5 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ -2 & 8 \end{pmatrix}.$$

Inverse of a matrix	Algorithm	Adjugate matrices	Solving Linear Systems	Matrix equations
				00000

Solve the equation AX + 2B = BX - 2C, where

$$A = \begin{pmatrix} -1 & 2 \\ 1 & -5 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ -2 & 8 \end{pmatrix}.$$

We have

$$AX + 2B = BX - 2C$$
$$AX - BX = -2B - 2C$$
$$BX - AX = 2B + 2C$$

and we get the equation

$$(B-A)X=2(B+C).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example
The matrix
$$B - A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 2 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 6 \end{pmatrix}$$
 is
regular, and there is the inverse $(B - A)^{-1}$. Then we multiply
the equation by $(B - A)^{-1}$ and we get
 $(B - A)^{-1}(B - A)X = (B - A)^{-1}2(B + C)$
 $X = 2(B - A)^{-1}(B + C)$.
We compute
 $(B - A)^{-1} = \frac{1}{12}\begin{pmatrix} 6 & 0 \\ -2 & 2 \end{pmatrix}, \quad B + C = \begin{pmatrix} 1 & 3 \\ 1 & 9 \end{pmatrix}$
and we get
 $X = 2\frac{1}{12}\begin{pmatrix} 6 & 0 \\ -2 & 2 \end{pmatrix}\begin{pmatrix} 1 & 3 \\ 1 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$.

Matrix equations

Algorithm 0000