[Eigenvectors and Eigenvalues](#page-2-0) [How to find Eigenvalues and Eigenvectors?](#page-16-0)
 [Some more observations](#page-25-0)

Society of Collegenvalues and Eigenvectors?

KORKARA KERKER DAGA

UMB 551I Linear algebra

Lenka Zalabová

We follow the Czech version (UMB 551 Lineární algebra) by Jan Eisner available on fix.prf.jcu.cz/ eisner/lock/UMB-551/

13. prosince 2016

[Eigenvectors and Eigenvalues](#page-2-0) [How to find Eigenvalues and Eigenvectors?](#page-16-0)
 [Some more observations](#page-25-0)

Society of Collegenvalues and Eigenvectors?

KEL KALEY KEY E NAG

2 [How to find Eigenvalues and Eigenvectors?](#page-16-0)

Definition

Let *A* be a square matrix of order *n*.

The number λ is called an *eigenvalue of the matrix A*, if there is a non–zero (column) *n*–dimensional vector *v* such that

$$
Av=\lambda v.
$$

(There is a matrix multiplication on the left, and the scalar multiplication on the right.)

The vector *v* is called an *eigenvector of the matrix A* corresponding to the eigenvalue λ .

If λ is an eigenvalue, then we denote $V_{\lambda} := \{ v \in \mathbb{R}^n : Av = \lambda v \}$ the set of all eigenvectors corresponding to λ (together with the zero vector).

KORK ERKER ADAM ADA

A non–trivial subset V of an arithmetic vector space \mathbb{R}^n is called a *subspace*, if the following facts hold:

1 If $u, v \in V$, then $u + v \in V$,

- 2 If $u \in V$, then $ku \in V$ for each $k \in \mathbb{R}$.
- In fact, a subspace is a non–trivial subset of vectors from R *ⁿ* which is closed under operations of addition and scalar multiplication, i.e. closed under linear combinations.

KOD KARD KED KE DA ARD KOR

Example

In \mathbb{R}^2 , consider the subset

$$
V:=\{(t,t): t\in\mathbb{R}\}.
$$

Geometrically, it is (the set of all vectors lying on) the line $y = x$. Is *V* a subspace?

Example

```
In \mathbb{R}^2, consider the subset
```

$$
V:=\{(t,t): t\in\mathbb{R}\}.
$$

Geometrically, it is (the set of all vectors lying on) the line $y = x$. Is *V* a subspace?

The set *V* is non–trivial, because it contains the origin (0, 0). Moreover, for all (t, t) , $(s, s) \in V$ and $r \in \mathbb{R}$ we have

•
$$
(t, t) + (s, s) = (t + s, t + s) \in V
$$
,

$$
r(t,t)=(rt,rt)\in V,
$$

Thus it is a subspace.

Theorem

Consider a non–trivial subset of vectors. Then the set of all linear combinations of these vectors form a subspace of an arithmetic vector space, the so–called subspace generated by the subset of vectors.

- In fact, all subspaces in \mathbb{R}^n are lines, planes, spaces, etc. through the origin.
- These are simply solutions of homogeneous systems of *n* variables.

[Eigenvectors and Eigenvalues](#page-2-0)
 $\frac{1}{2}$
 $\frac{1$

KOD KOD KED KED BOAR

Theorem

For each eigenvalue λ , the set $V_{\lambda} = \{v \in \mathbb{R}^n : Av = \lambda v\}$ is a subspace of an arithmetic vector space \mathbb{R}^n . It is called an eigenspace with an eigenvalue λ*.*

Theorem

For each eigenvalue λ , the set $V_{\lambda} = \{v \in \mathbb{R}^n : Av = \lambda v\}$ is a subspace of an arithmetic vector space \mathbb{R}^n . It is called an eigenspace with an eigenvalue λ*.*

We have

- $\bullet \ \ o \in V_{\lambda}$, since $A \circ \circ \circ = \lambda \circ \text{for each } \lambda$,
- $A(u + v) = Au + Av = \lambda u + \lambda v = \lambda(u + v)$ for each *u*, $v \in V_{\lambda}$,
- \bullet *A*(*ku*) = *k*(*Au*) = *k* λ *u* = λ (*ku*) for each *u* ∈ *V*_λ and *k* ∈ ℝ.

KOD KOD KED KED E VAN

For each eigenvalue λ we have

$$
V_\lambda=\{\,v\in\mathbb{R}^n\,:\,(A-\lambda E)v=0\}.
$$

Thus the space V_{λ} is the solution of the homogeneous system of linear equations of *n* variables with the matrix of the system $A - \lambda E$.

For each eigenvalue λ we have

$$
V_\lambda=\{\,v\in\mathbb{R}^n\,:\,(A-\lambda E)v=0\}.
$$

Thus the space V_λ is the solution of the homogeneous system of linear equations of *n* variables with the matrix of the system $A - \lambda E$.

Example

Prove that $\lambda = -3$ is the eigenvalue of the matrix

$$
A = \left(\begin{array}{rrr} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{array}\right)
$$

and find the corresponding eigenspace *V*−3.

[Eigenvectors and Eigenvalues](#page-2-0)
 $\frac{1}{2}$ [How to find Eigenvalues and Eigenvectors?](#page-16-0)
 $\frac{1}{2}$ [Some more observations](#page-25-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Example

We find the matrix
$$
A - (-3)E = A + 3E =
$$

$$
\left(\begin{array}{rrr}5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11\end{array}\right) + 3\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) = \left(\begin{array}{rrr}8 & 8 & 16 \\ 4 & 4 & 8 \\ -4 & -4 & -8\end{array}\right)
$$

and we solve the corresponding homogeneous system with this matrix (we do not write the absolute values, i.e. zeros). Clearly

$$
\left(\begin{array}{rrr}8 & 8 & 16 \\ 4 & 4 & 8 \\ -4 & -4 & -8\end{array}\right) \sim \left(\begin{array}{rrr}1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),
$$

and thus $\det A = 0$.

[Eigenvectors and Eigenvalues](#page-2-0) [How to find Eigenvalues and Eigenvectors?](#page-16-0)

Sonce of Conservations

Sonce of Conservations

Example

The resulting system is of the form $x_1 + x_2 + 2x_3 = 0$, and its solutions are vectors of the form

$$
\left(\begin{array}{c} s \\ t \\ -\frac{1}{2}(s+t) \end{array}\right).
$$

For example, the vector $(2,0,-1)^T$ is an eigenvector with the eigenvalue -3 . Thus $\lambda = -3$ is the eigenvalue and

$$
V_{-3} = \left\{ s \left(\begin{array}{c} 1 \\ 0 \\ -\frac{1}{2} \end{array} \right) + t \left(\begin{array}{c} 0 \\ 1 \\ -\frac{1}{2} \end{array} \right) ; s, t \in \mathbb{R} \right\}.
$$

KOD KARD KED KED BE YOUR

[Eigenvectors and Eigenvalues](#page-2-0) [How to find Eigenvalues and Eigenvectors?](#page-16-0) [Some more observations](#page-25-0)

KOD KARD KED KED BE YOUR

Definition

A *characteristic polynomial* of the square matrix *A* of order *n* is defined as the polynomial

$$
\det(A - \lambda E)
$$

(of degree n) with the variable λ .

[Eigenvectors and Eigenvalues](#page-2-0) [How to find Eigenvalues and Eigenvectors?](#page-16-0) [Some more observations](#page-25-0)

Definition

A *characteristic polynomial* of the square matrix *A* of order *n* is defined as the polynomial

$$
\det(A-\lambda E)
$$

(of degree *n*) with the variable λ .

Theorem

The set of all eigenvalues of the matrix A equals to the set of all roots of the characteristic polynomial of the matrix A.

- Polynomial of degree *n* has *n* (generally complex) roots (taken with multiplicities).
- **•** If a real polynomial has a complex root, then it has also the complex conjugated root.

The matrix *A* of order *n* has exactly *n* eigenvalues (taken with multiplicities).

Theorem

The determinant of the matrix is the product of all eigenvalues (taken with multiplicities).

Let us remark that for a matrix *A*, the sum of elements on the main diagonal is called a *trace*. It holds that trace equals to the sum of all eigenvalues (taken with multiplicities).

Theorem

All eigenvalues of a symmetric matrix are real.

KOD KOD KED KED E VAN

How to find eigenvalues and eigenvectors of a square matrix *A*?

- ¹ Find the characteristic polynomial of the matrix *A* and find all its roots.
- **2** For each eigenvalue λ , solve the homogeneous system $(A - \lambda E)x = 0$.

How to find eigenvalues and eigenvectors of a square matrix *A*?

- ¹ Find the characteristic polynomial of the matrix *A* and find all its roots.
- **2** For each eigenvalue λ , solve the homogeneous system $(A - \lambda E)x = 0$.

Example

Find all eigenvalues and eigenvectors of the matrix

$$
A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).
$$

[Eigenvectors and Eigenvalues](#page-2-0)
 $\overline{\text{C}}$ [How to find Eigenvalues and Eigenvectors?](#page-16-0)
 $\overline{\text{C}}$ [Some more observations](#page-25-0)

KORKARA KERKER DAGA

Example

We find the polynomial det($A - \lambda E$):

$$
A - \lambda E = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{pmatrix}
$$

$$
|A - \lambda E| = \begin{vmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -\lambda^3 + 3\lambda + 2
$$

We find roots of the polynomial $-\lambda^3+3\lambda+2,$ i.e. we solve the equation

$$
-\lambda^3+3\lambda+2=0.
$$

[Eigenvectors and Eigenvalues](#page-2-0) **[How to find Eigenvalues and Eigenvectors?](#page-16-0)** [Some more observations](#page-25-0)

Some more observations

Some proposed on the contract of the

Example

Possible integer roots of

$$
-\lambda^3+3\lambda+2=0
$$

are divisors of the absolute value 2, i.e. the numbers $1, -1, 2$ and -2 . We see that $\lambda_1 = -1$ is a root.

[Eigenvectors and Eigenvalues](#page-2-0) **[How to find Eigenvalues and Eigenvectors?](#page-16-0)** [Some more observations](#page-25-0)

Socococococo **Socococo Socococo**

KORK ERKER ADAM ADA

Example

Possible integer roots of

$$
-\lambda^3+3\lambda+2=0
$$

are divisors of the absolute value 2, i.e. the numbers $1, -1, 2$ and -2 . We see that $\lambda_1 = -1$ is a root.

We can also use the so–called *Horner's method*.

In the last row, there are the coefficients of the polynomial quotient of $-\lambda^3+3\lambda+2$ and $\lambda+1,$ i.e. the polynomial $-\lambda^2 + \lambda + 2$.

KORKARA KERKER DAGA

Example

We have

$$
(-\lambda^3 + 3\lambda + 2) = (\lambda + 1)(-\lambda^2 + \lambda + 2),
$$

$$
\lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)
$$

and we get roots $\lambda_2 = -1$, $\lambda_3 = 2$. Thus all eigenvalues of the matrix *A* are

$$
\lambda_1 = \lambda_2 = -1,
$$

$$
\lambda_3 = 2.
$$

[Eigenvectors and Eigenvalues](#page-2-0) **[How to find Eigenvalues and Eigenvectors?](#page-16-0)** [Some more observations](#page-25-0)

Sonce observations

Sonce observations

Example

We find corresponding eigenspaces for the above eigenvalues: $\lambda = 2$: We solve the homogeneous system with the matrix $A - 2E$ which is

$$
\left(\begin{array}{rrr} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{array}\right) \sim \left(\begin{array}{rrr} 1 & 1 & -2 \\ 0 & 3 & -3 \\ 0 & 3 & -3 \end{array}\right) \sim \left(\begin{array}{rrr} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right)
$$

Clearly, the system has non–trivial solution. We solve the system

$$
x_1 + x_2 - 2x_3 = 0
$$

\n
$$
x_2 - x_3 = 0
$$

\nand the solution is
$$
V_2 = \left\{ \begin{pmatrix} t \\ t \\ t \end{pmatrix} : t \in \mathbb{R} \right\}.
$$

[Eigenvectors and Eigenvalues](#page-2-0) **[How to find Eigenvalues and Eigenvectors?](#page-16-0)** [Some more observations](#page-25-0)

Some more observations

Some observations

Example

 $\lambda = -1$: We solve the homogeneous system with the matrix $A + E$ which is

$$
A + E = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right) \sim \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)
$$

and the solution is

$$
V_{-1} = \left\{ \begin{pmatrix} -s - t \\ s \\ t \end{pmatrix} : t, s \in \mathbb{R} \right\}
$$

=
$$
\left\{ t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : t, s \in \mathbb{R} \right\}.
$$

- There always has to be at least one parameter in the system.
- The number of these parameters is called a *geometric multiplicity of the eigenvalue*.
- The algebraic multiplicity of the eigenvalue then is its multiplicity as a root of the characteristic polynomial.
- These multiplicities do not have to coincide. In fact, geometric multiplicity is always smaller or equal to the algebraic multiplicity.

[Eigenvectors and Eigenvalues](#page-2-0) [How to find Eigenvalues and Eigenvectors?](#page-16-0)

 \bullet
 \bullet

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Theorem

Eigenvectors corresponding to different eigenvalues are linearly independent.

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 Ω

Theorem

Eigenvectors corresponding to different eigenvalues are linearly independent.

Theorem

Consider a real matrix A with its (possibly complex) eigenvalues and eigenvectors. If $\lambda = a + bi$ *is eigenvalue of A with eigenvector* $u = u_1 + iu_2$ *, then* $\overline{\lambda}$ = a – *bi is eigenvalue of A with eigenvector* $u = u_1 - iu_2$ *.*

Theorem

Eigenvectors corresponding to different eigenvalues are linearly independent.

Theorem

Consider a real matrix A with its (possibly complex) eigenvalues and eigenvectors. If $\lambda = a + bi$ *is eigenvalue of A with eigenvector* $u = u_1 + i u_2$ *, then* $\overline{\lambda}$ = a − *bi is eigenvalue of A with eigenvector u* = u_1 − iu_2 .

Theorem

If the matrix A satisfies $A^{-1} = \overline{A}^T$ *(the so–called unitary matrix), then all of its eigenvalues have its absolute value equal to* 1*. In particular, its real eigenvalues can be only* 1 *or* −1*.*