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One-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

In this chapter we formulate conditions defining the simplest bifurcations
of equilibria in n-dimensional continuous-time systems: the fold and the
Hopf bifurcations. Then we study these bifurcations in the lowest possible
dimensions: the fold bifurcation for scalar systems and the Hopf bifurca-
tion for planar systems. Chapter 5 shows how to “lift” these results to
n-dimensional situations.

3.1 Simplest bifurcation conditions

Consider a continuous-time system depending on a parameter

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

where f is smooth with respect to both x and α. Let x = x0 be a hyper-
bolic equilibrium in the system for α = α0. As we have seen in Chapter 2,
under a small parameter variation the equilibrium moves slightly but re-
mains hyperbolic. Therefore, we can vary the parameter further and mon-
itor the equilibrium. It is clear that there are, generically, only two ways
in which the hyperbolicity condition can be violated. Either a simple real
eigenvalue approaches zero and we have λ1 = 0 (see Figure 3.1(a)), or a
pair of simple complex eigenvalues reaches the imaginary axis and we have
λ1,2 = ±iω0, ω0 > 0 (see Figure 3.1(b)) for some value of the parameter. It
is obvious (and can be rigorously formalized) that we need more parameters
to allocate extra eigenvalues on the imaginary axis. Notice that this might



3
One-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

In this chapter we formulate conditions defining the simplest bifurcations
of equilibria in n-dimensional continuous-time systems: the fold and the
Hopf bifurcations. Then we study these bifurcations in the lowest possible
dimensions: the fold bifurcation for scalar systems and the Hopf bifurca-
tion for planar systems. Chapter 5 shows how to “lift” these results to
n-dimensional situations.

3.1 Simplest bifurcation conditions

Consider a continuous-time system depending on a parameter
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not be true if the system has some special properties, such as a symmetry
(see Chapter 7).

The rest of the chapter will essentially be devoted to the proof that a
nonhyperbolic equilibrium satisfying one of the above conditions is struc-
turally unstable and to the analysis of the corresponding bifurcations of
the local phase portrait under variation of the parameter. We have already
seen several examples of these bifurcations in Chapter 2. Let us finish this
section with the following two definitions.

Definition 3.1 The bifurcation associated with the appearance of λ1 = 0
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation has a lot of other names, including limit point, saddle-

node bifurcation, and turning point. ♦
Definition 3.2 The bifurcation corresponding to the presence of λ1,2 =
±iω0, ω0 > 0, is called a Hopf (or Andronov-Hopf) bifurcation.

Notice that the tangent bifurcation is possible if n ≥ 1, but for the Hopf
bifurcation we need n ≥ 2.

3.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

ẋ = α + x2 ≡ f(x, α). (3.1)

At α = 0 this system has a nonhyperbolic equilibrium x0 = 0 with λ =
fx(0, 0) = 0. The behavior of the system for all the other values of α
is also clear (see Figure 3.2). For α < 0 there are two equilibria in the
system: x1,2(α) = ±√−α, the left one of which is stable, while the right
one is unstable. For α > 0 there are no equilibria in the system. While
α crosses zero from negative to positive values, the two equilibria (stable



80 3. One-Parameter Bifurcations of Equilibria

λ

2λ

(a) (b)

1

λ1

FIGURE 3.1. Codim 1 critical cases.

not be true if the system has some special properties, such as a symmetry
(see Chapter 7).

The rest of the chapter will essentially be devoted to the proof that a
nonhyperbolic equilibrium satisfying one of the above conditions is struc-
turally unstable and to the analysis of the corresponding bifurcations of
the local phase portrait under variation of the parameter. We have already
seen several examples of these bifurcations in Chapter 2. Let us finish this
section with the following two definitions.

Definition 3.1 The bifurcation associated with the appearance of λ1 = 0
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation has a lot of other names, including limit point, saddle-

node bifurcation, and turning point. ♦
Definition 3.2 The bifurcation corresponding to the presence of λ1,2 =
±iω0, ω0 > 0, is called a Hopf (or Andronov-Hopf) bifurcation.

Notice that the tangent bifurcation is possible if n ≥ 1, but for the Hopf
bifurcation we need n ≥ 2.

3.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:
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and unstable) “collide,” forming at α = 0 an equilibrium with λ = 0, and
disappear. This is a fold bifurcation. The term “collision” is appropriate,
since the speed of approach ( d

dαx1,2(α)) of the equilibria tends to infinity
as α→ 0.

There is another way of presenting this bifurcation: plotting a bifurcation
diagram in the direct product of the phase and parameter spaces (simply,
the (x, α)-plane). The equation

f(x, α) = 0

defines an equilibrium manifold, which is simply the parabola α = −x2

(see Figure 3.3). This presentation displays the bifurcation picture at once.
Fixing some α, we can easily determine the number of equilibria in the

α = − x 2

x2 (α)

x1 (α)

0 α

x

FIGURE 3.3. Fold bifurcation in the phase-parameter space.

system for this parameter value. The projection of the equilibrium manifold
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into the parameter axis has a singularity of the fold type at (x, α) = (0, 0).

Remark:
The system ẋ = α− x2 can be considered in the same way. The analysis

reveals two equilibria appearing for α > 0. ♦

Now add to system (3.1) higher-order terms that can depend smoothly
on the parameter. It happens that these terms do not change qualitatively
the behavior of the system near the origin x = 0 for parameter values close
to α = 0. Actually, the following lemma holds:

Lemma 3.1 The system

ẋ = α + x2 + O(x3)

is locally topologically equivalent near the origin to the system

ẋ = α + x2.

Proof:
The proof goes through two steps. It is based on the fact that for scalar

systems a homeomorphism mapping equilibria into equilibria will also map
their connecting orbits.

Step 1 (Analysis of equilibria). Introduce a scalar variable y and write the
first system as

ẏ = F (y, α) = α + y2 + ψ(y, α), (3.2)

where ψ = O(y3) is a smooth functions of (y, α) near (0, 0). Consider the
equilibrium manifold of (3.2) near the origin (0, 0) of the (y, α)-plane:

M = {(y, α) : F (y, α) = α + y2 + ψ(y, α) = 0}.

The curve M passes through the origin (F (0, 0) = 0). By the Implicit
Function Theorem (since Fα(0, 0) = 1), it can be locally parametrized by
y:

M = {(y, α) : α = g(y)},
where g is smooth and defined for small |y|. Moreover,

g(y) = −y2 + O(y3)

(check!). Thus, for any sufficiently small α < 0, there are two equilibria
of (3.2) near the origin in (3.2), y1(α) and y2(α), which are close to the
equilibria of (3.1), i.e., x1(α) = +

√−α and x2(α) = −√−α, for the same
parameter value (see Figure 3.4).
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FIGURE 3.4. Fold bifurcation for the perturbed system.

Step 2 (Homeomorphism construction). For small |α|, construct a parame-
ter-dependent map y = hα(x) as following. For α ≥ 0 take the identity
map

hα(x) = x.

For α < 0 take a linear transformation

hα(x) = a(α) + b(α)x,

where the coefficients a, b are uniquely determined by the conditions

hα(xj(α)) = yj(α), j = 1, 2,

(find them!). The constructed map hα : R
1 → R

1 is a homeomorphism
mapping orbits of (3.1) near the origin into the corresponding orbits of
(3.2), preserving the direction of time. Chapter 2 identified this property
as the local topological equivalence of parameter-dependent systems.

Although it is not required in the book for the homeomorphism hα to
depend continuously on α (see Remark after Definition 2.14), this property
holds here, since hα tends to the identity map as negative α→ 0. ✷

3.3 Generic fold bifurcation

We shall show that system (3.1) (with a possible sign change of the x2-
term) is a topological normal form of a generic one-dimensional system
having a fold bifurcation. In Chapter 5 we will also see that in some strong
sense it describes the fold bifurcation in a generic n-dimensional system.

Suppose the system

ẋ = f(x, α), x ∈ R
1, α ∈ R

1, (3.3)
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with a smooth f has at α = 0 the equilibrium x = 0 with λ = fx(0, 0) = 0.
Expand f(x, α) as a Taylor series with respect to x at x = 0:

f(x, α) = f0(α) + f1(α)x + f2(α)x2 + O(x3).

Two conditions are satisfied: f0(0) = f(0, 0) = 0 (equilibrium condition)
and f1(0) = fx(0, 0) = 0 (fold bifurcation condition).

The main idea of the following simple calculations is this: By smooth
invertible changes of the coordinate and the parameter, transform system
(3.3) into the form (3.1) up to and including the second-order terms. Then,
Lemma 3.1 can be applied, thus making it possible to drop the higher-order
terms. While proceeding, we will see that some extra nondegeneracy and
transversality conditions must be imposed to make these transformations
possible. These conditions will actually specify which one-parameter system
having a fold bifurcation can be considered as generic. This idea works
for all local bifurcation problems. We will proceed in exactly this way in
analyzing the Hopf bifurcation later in this chapter.

Step 1 (Shift of the coordinate). Perform a linear coordinate shift by intro-
ducing a new variable ξ:

ξ = x + δ, (3.4)

where δ = δ(α) is an a priori unknown function that will be defined later.
The inverse coordinate transformation is

x = ξ − δ.

Substituting (3.4) into (3.3) yields

ξ̇ = ẋ = f0(α) + f1(α)(ξ − δ) + f2(α)(ξ − δ)2 + · · · .
Therefore,

ξ̇ =
[
f0(α)− f1(α)δ + f2(α)δ2 + O(δ3)

]
+

[
f1(α)− 2f2(α)δ + O(δ2)

]
ξ

+ [f2(α) + O(δ)] ξ2

+ O(ξ3).

Assume that

(A.1) f2(0) =
1
2
fxx(0, 0) = 0.

Then there is a smooth function δ(α) that annihilates the linear term in
the above equation for all sufficiently small |α|. This can be justified with
the Implicit Function Theorem. Indeed, the condition for the linear term
to vanish can be written as

F (α, δ) ≡ f1(α)− 2f2(α)δ + δ2ψ(α, δ) = 0
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with some smooth function ψ. We have

F (0, 0) = 0,
∂F

∂δ

∣∣∣∣
(0,0)

= −2f2(0) = 0,
∂F

∂α

∣∣∣∣
(0,0)

= f ′1(0),

which implies (local) existence and uniqueness of a smooth function δ =
δ(α) such that δ(0) = 0 and F (α, δ(α)) ≡ 0. It also follows that

δ(α) =
f ′1(0)
2f2(0)

α + O(α2).

The equation for ξ now contains no linear terms:

ξ̇ = [f ′0(0)α + O(α2)] + [f2(0) + O(α)]ξ2 + O(ξ3). (3.5)

Step 2 (Introduce a new parameter). Consider as a new parameter µ = µ(α)
the constant (ξ-independent) term of (3.5):

µ = f ′0(0)α + α2φ(α),

where φ is some smooth function. We have:

(a) µ(0) = 0;
(b) µ′(0) = f ′0(0) = fα(0, 0).

If we assume that

(A.2) fα(0, 0) = 0,

then the Inverse Function Theorem implies local existence and uniqueness
of a smooth inverse function α = α(µ) with α(0) = 0. Therefore, equation
(3.5) now reads

ξ̇ = µ + a(µ)ξ2 + O(ξ3),

where a(µ) is a smooth function with a(0) = f2(0) = 0 due to the first
assumption (A.1).

Step 3 (Final scaling). Let η = |a(µ)|ξ and β = |a(µ)|µ. Then we get

η̇ = β + sη2 + O(η3),

where s = sign a(0) = ±1.

Therefore, the following theorem is proved.

Theorem 3.1 Suppose that a one-dimensional system

ẋ = f(x, α), x ∈ R
1, α ∈ R

1,

with smooth f , has at α = 0 the equilibrium x = 0, and let λ = fx(0, 0) = 0.
Assume that the following conditions are satisfied:
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(A.1) fxx(0, 0) = 0;
(A.2) fα(0, 0) = 0.

Then there are invertible coordinate and parameter changes transforming
the system into

η̇ = β ± η2 + O(η3). ✷

Using Lemma 3.1, we can eliminate O(η3) terms and finally arrive at the
following general result.

Theorem 3.2 (Topological normal form for the fold bifurcation)
Any generic scalar one-parameter system

ẋ = f(x, α),

having at α = 0 the equilibrium x = 0 with λ = fx(0, 0) = 0, is locally
topologically equivalent near the origin to one of the following normal forms:

η̇ = β ± η2. ✷

Remark:
The genericity conditions in Theorem 3.2 are the nondegeneracy condi-

tion (A.1) and the transversality condition (A.2) from Theorem 3.1. ♦

3.4 The normal form of the Hopf bifurcation

Consider the following system of two differential equations depending on
one parameter: {

ẋ1 = αx1 − x2 − x1(x2
1 + x2

2),
ẋ2 = x1 + αx2 − x2(x2

1 + x2
2). (3.6)

This system has the equilibrium x1 = x2 = 0 for all α with the Jacobian
matrix

A =
(

α −1
1 α

)
having eigenvalues λ1,2 = α ± i. Introduce the complex variable z = x1 +
ix2, z̄ = x1− ix2, |z|2 = zz̄ = x2

1 +x2
2. This variable satisfies the differential

equation

ż = ẋ1 + iẋ2 = α(x1 + ix2) + i(x1 + ix2)− (x1 + ix2)(x2
1 + x2

2),

and we can therefore rewrite system (3.6) in the following complex form:

ż = (α + i)z − z|z|2. (3.7)
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Finally, using the representation z = ρeiϕ, we obtain

ż = ρ̇eiϕ + ρiϕ̇eiϕ,

or
ρ̇eiϕ + iρϕ̇eiϕ = ρeiϕ(α + i− ρ2),

which gives the polar form of system (3.6):{
ρ̇ = ρ(α− ρ2),
ϕ̇ = 1. (3.8)

Bifurcations of the phase portrait of the system as α passes through zero
can easily be analyzed using the polar form, since the equations for ρ and
ϕ in (3.8) are uncoupled. The first equation (which should obviously be
considered only for ρ ≥ 0) has the equilibrium point ρ = 0 for all values of
α. The equilibrium is linearly stable if α < 0; it remains stable at α = 0
but nonlinearly (so the rate of solution convergence to zero is no longer ex-
ponential); for α > 0 the equilibrium becomes linearly unstable. Moreover,
there is an additional stable equilibrium point ρ0(α) =

√
α for α > 0. The

second equation describes a rotation with constant speed. Thus, by super-
position of the motions defined by the two equations of (3.8), we obtain the
following bifurcation diagram for the original two-dimensional system (3.6)
(see Figure 3.5). The system always has an equilibrium at the origin. This
equilibrium is a stable focus for α < 0 and an unstable focus for α > 0.
At the critical parameter value α = 0 the equilibrium is nonlinearly stable
and topologically equivalent to the focus. Sometimes it is called a weakly
attracting focus. This equilibrium is surrounded for α > 0 by an isolated
closed orbit (limit cycle) that is unique and stable. The cycle is a circle of
radius ρ0(α) =

√
α. All orbits starting outside or inside the cycle except

at the origin tend to the cycle as t → +∞. This is an Andronov-Hopf
bifurcation.

This bifurcation can also be presented in (x, y, α)-space (see Figure 3.6).
The appearing α-family of limit cycles forms a paraboloid surface.

x1

x2 x2

x1

x2

x1

α = 0 α > 0α < 0

FIGURE 3.5. Supercritical Hopf bifurcation.



3.4 The normal form of the Hopf bifurcation 87

Finally, using the representation z = ρeiϕ, we obtain
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FIGURE 3.6. Supercritical Hopf bifurcation in the phase-parameter space.

A system having nonlinear terms with the opposite sign,{
ẋ1 = αx1 − x2 + x1(x2

1 + x2
2),

ẋ2 = x1 + αx2 + x2(x2
1 + x2

2), (3.9)

which has the following complex form:

ż = (α + i)z + z|z|2,

can be analyzed in the same way (see Figures 3.7 and 3.8). The system
undergoes the Andronov-Hopf bifurcation at α = 0. Contrary to system
(3.6), there is an unstable limit cycle in (3.9), which disappears when α
crosses zero from negative to positive values. The equilibrium at the origin
has the same stability for α = 0 as in system (3.6): It is stable for α < 0 and
unstable for α > 0. Its stability at the critical parameter value is opposite
to that in (3.6): It is (nonlinearly) unstable at α = 0.

x1 x1x 1

x2x2x2

α = 0α < 0 α > 0

FIGURE 3.7. Subcritical Hopf bifurcation.
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x1
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FIGURE 3.8. Subcritical Hopf bifurcation in the phase-parameter space.

Remarks:
(1) We have seen that there are two types of Andronov-Hopf bifurca-

tion. The bifurcation in system (3.6) is often called supercritical because
the cycle exists for positive values of the parameter α (“after” the bifurca-
tion). The bifurcation in system (3.9) is called subcritical since the cycle is
present “before” the bifurcation. It is clear that this terminology is some-
how misleading since “after” and “before” depend on the chosen direction
of parameter variation.

(2) In both cases we have a loss of stability of the equilibrium at α = 0
under increase of the parameter. In the first case (with “−” in front of
the cubic terms), the stable equilibrium is replaced by a stable limit cycle
of small amplitude. Therefore, the system “remains” in a neigborhood of
the equilibrium and we have a soft or noncatastrophic stability loss. In the
second case (with “+” in front of the cubic terms), the region of attraction
of the equilibrium point is bounded by the unstable cycle, which “shrinks”
as the parameter approaches its critical value and disappears. Thus, the
system is “pushed out” from a neigborhood of the equilibrium, giving us a
sharp or catastrophic loss of stability. If the system loses stability softly, it
is well “controllable”: If we make the parameter negative again, the system
returns to the stable equilibrium. On the contrary, if the system loses its
stability sharply, resetting to a negative value of the parameter may not
return the system back to the stable equilibrium since it may have left its
region of attraction. Notice that the type of Andronov-Hopf bifurcation
is determined by the stability of the equilibrium at the critical parameter
value.

(3) The above interpretation of super- and subcritical Hopf bifurcations
should be considered with care. If we consider α as a slow variable and add
to system (3.6) the third equation

α̇ = ε,
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with ε small but positive, then the resulting time series (x(t), y(t), α(t))
will demonstrate some degree of “sharpness.” If the solution starts at some
initial point (x0, y0, α0) with α0 < 0, it then converges to the origin and
remains very close to it even if α becomes positive, thus demonstrating no
oscillations. Only when α reaches some finite positive value will the solution
leave the equilibrium “sharply” and start to oscillate with a relatively large
amplitude.

(4) Finally, consider a system without nonlinear terms:

ż = (α + i)z.

This system also has a family of periodic orbits of increasing amplitude, but
all of them are present at α = 0 when the system has a center at the origin
(see Figure 3.9). It can be said that the limit cycle paraboloid “degenerates”

x1

x2

α

FIGURE 3.9. “Hopf bifurcation” in a linear system.

into the plane α = 0 in (x, y, α)-space in this case. This observation makes
natural the appearance of small limit cycles in the nonlinear case. ♦

Let us now add some higher-order terms to system (3.6) and write it in
the vector form(

ẋ1
ẋ2

)
=

(
α −1
1 α

)(
x1
x2

)
− (x2

1 + x2
2)

(
x1
x2

)
+ O(‖x‖4), (3.10)

where x = (x1, x2)T , ‖x‖2 = x2
1 + x2

2, and O(‖x‖4) terms can smoothly
depend on α. The following lemma will be proved in Appendix 1 to this
chapter.

Lemma 3.2 System (3.10) is locally topologically equivalent near the ori-
gin to system (3.6). ✷

Therefore, the higher-order terms do not affect the bifurcation behavior
of the system.
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3.5 Generic Hopf bifurcation

We now shall prove that any generic two-dimensional system undergoing a
Hopf bifurcation can be transformed into the form (3.10) with a possible
difference in the sign of the cubic terms.

Consider a system

ẋ = f(x, α), x = (x1, x2)T ∈ R
2, α ∈ R

1,

with a smooth function f , which has at α = 0 the equilibrium x = 0 with
eigenvalues λ1,2 = ±iω0, ω0 > 0. By the Implicit Function Theorem, the
system has a unique equilibrium x0(α) in some neigborhood of the origin
for all sufficiently small |α|, since λ = 0 is not an eigenvalue of the Jacobian
matrix. We can perform a coordinate shift, placing this equilibrium at the
origin. Therefore, we may assume without loss of generality that x = 0
is the equilibrium point of the system for |α| sufficiently small. Thus, the
system can be written as

ẋ = A(α)x + F (x, α), (3.11)

where F is a smooth vector function whose components F1,2 have Taylor
expansions in x starting with at least quadratic terms, F = O(‖x‖2). The
Jacobian matrix A(α) can be written as

A(α) =
(

a(α) b(α)
c(α) d(α)

)
with smooth functions of α as its elements. Its eigenvalues are the roots of
the characteristic equation

λ2 − σλ + ∆ = 0,

where σ = σ(α) = a(α) + d(α) = tr A(α), and ∆ = ∆(α) = a(α)d(α) −
b(α)c(α) = detA(α). So,

λ1,2(α) =
1
2

(
σ(α)±

√
σ2(α)− 4∆(α)

)
.

The Hopf bifurcation condition implies

σ(0) = 0, ∆(0) = ω2
0 > 0.

For small |α| we can introduce

µ(α) =
1
2
σ(α), ω(α) =

1
2

√
4∆(α)− σ2(α)

and therefore obtain the following representation for the eigenvalues:

λ1(α) = λ(α), λ2(α) = λ(α),

where
λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0.
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Lemma 3.3 By introducing a complex variable z, system (3.11) can be
written for sufficiently small |α| as a single equation:

ż = λ(α)z + g(z, z̄, α), (3.12)

where g = O(|z|2) is a smooth function of (z, z̄, α).

Proof:
Let q(α) ∈ C

2 be an eigenvector of A(α) corresponding to the eigenvalue
λ(α):

A(α)q(α) = λ(α)q(α),

and let p(α) ∈ C
2 be an eigenvector of the transposed matrix AT (α) cor-

responding to its eigenvalue λ(α):

AT (α)p(α) = λ(α)p(α).

It is always possible to normalize p with respect to q:

〈p(α), q(α)〉 = 1,

where 〈·, ·〉 means the standard scalar product in C
2: 〈p, q〉 = p̄1q1 + p̄2q2.

Any vector x ∈ R
2 can be uniquely represented for any small α as

x = zq(α) + z̄q̄(α) (3.13)

for some complex z, provided the eigenvectors are specified. Indeed, we
have an explicit formula to determine z:

z = 〈p(α), x〉.
To verify this formula (which results from taking the scalar product with
p of both sides of (3.13)), we have to prove that 〈p(α), q̄(α)〉 = 0. This is
the case, since

〈p, q̄〉 = 〈p, 1
λ̄
Aq̄〉 =

1
λ̄
〈AT p, q̄〉 =

λ

λ̄
〈p, q̄〉

and therefore (
1− λ

λ̄

)
〈p, q̄〉 = 0.

But λ = λ̄ because for all sufficiently small |α| we have ω(α) > 0. Thus,
the only possibility is 〈p, q̄〉 = 0.

The complex variable z obviously satisfies the equation

ż = λ(α)z + 〈p(α), F (zq(α) + z̄q̄(α), α)〉,
having the required1 form (3.12) with

g(z, z̄, α) = 〈p(α), F (zq(α) + z̄q̄(α), α)〉. ✷

1The vectors q(α) and p(α), corresponding to the simple eigenvalues, can be
selected to depend on α as smooth as A(α).
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There is no reason to expect g to be an analytic function of z (i.e., z̄-
independent). Write g as a formal Taylor series in two complex variables
(z and z̄):

g(z, z̄, α) =
∑

k+l≥2

1
k!l!

gkl(α)zkz̄l,

where

gkl(α) =
∂k+l

∂zk∂z̄l
〈p(α), F (zq(α) + z̄q̄(α), α)〉

∣∣∣∣
z=0

,

for k + l ≥ 2, k, l = 0, 1, . . ..

Remarks:
(1) There are several (equivalent) ways to prove Lemma 3.3. The selected

one fits well into the framework of Chapter 5, where we will consider the
Hopf bifurcation in n-dimensional systems.

(2) Equation (3.13) imposes a linear relation between (x1, x2) and the
real and imaginary parts of z. Thus, the introduction of z can be viewed as
a linear invertible change of variables, y = T (α)x, and taking z = y1 + iy2.
As it can be seen from (3.13), the components (y1, y2) are the coordinates
of x in the real eigenbasis of A(α) composed by {2 Re q,−2 Im q}. In this
basis, the matrix A(α) has its canonical real (Jordan) form:

J(α) = T (α)A(α)T−1(α) =
(

µ(α) −ω(α)
ω(α) µ(α)

)
.

(3) Suppose that at α = 0 the function F (x, α) from (3.11) is represented
as

F (x, 0) =
1
2
B(x, x) +

1
6
C(x, x, x) + O(‖x‖4),

where B(x, y) and C(x, y, u) are symmetric multilinear vector functions of
x, y, u ∈ R

2. In coordinates, we have

Bi(x, y) =
2∑

j,k=1

∂2Fi(ξ, 0)
∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk, i = 1, 2,

and

Ci(x, y, u) =
2∑

j,k,l=1

∂3Fi(ξ, 0)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykul, i = 1, 2.

Then,

B(zq + z̄q̄, zq + z̄q̄) = z2B(q, q) + 2zz̄B(q, q̄) + z̄2B(q̄, q̄),

where q = q(0), p = p(0), so the Taylor coefficients gkl, k + l = 2, of the
quadratic terms in g(z, z̄, 0) can be expressed by the formulas

g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉, g02 = 〈p,B(q̄, q̄)〉,
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2∑

j,k=1

∂2Fi(ξ, 0)
∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk, i = 1, 2,

and

Ci(x, y, u) =
2∑

j,k,l=1

∂3Fi(ξ, 0)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykul, i = 1, 2.

Then,

B(zq + z̄q̄, zq + z̄q̄) = z2B(q, q) + 2zz̄B(q, q̄) + z̄2B(q̄, q̄),

where q = q(0), p = p(0), so the Taylor coefficients gkl, k + l = 2, of the
quadratic terms in g(z, z̄, 0) can be expressed by the formulas

g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉, g02 = 〈p,B(q̄, q̄)〉,
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and similar calculations with C give

g21 = 〈p, C(q, q, q̄)〉.

(4) The normalization of q is irrelevant in the following. Indeed, suppose
that q is normalized by 〈q, q〉 = 1. A vector q̃ = γq is also the eigenvector
for any nonzero γ ∈ C

1 but with the normalization 〈q̃, q̃〉 = |γ|2. Taking
p̃ = 1

γ̄ p will keep the relative normalization untouched: 〈p̃, q̃〉 = 1. It is clear
that Taylor coefficients g̃kl computed using q̃, p̃ will be different from the
original gkl. For example, we can check via the multilinear representation
that

g̃20 = γg20, g̃11 = γ̄g11, g̃02 =
γ̄2

γ
g02, g̃21 = |γ|2g21.

However, this change can easily be neutralized by the linear scaling of the
variable: z = 1

γw, which results in the same equation for w as before.
For example, setting 〈q, q〉 = 1

2 corresponds to the standard relation
z = 〈p, x〉 = x1 + ix2 for a system that already has the real canonical form
ẋ = J(α)x, where J is given above. In this case,

q =
1
2

(
1
−i

)
, p =

(
1
−i

)
. ♦

Let us start to make nonlinear (complex) coordinate changes that will
simplify (3.12). First of all, remove all quadratic terms.

Lemma 3.4 The equation

ż = λz +
g20
2
z2 + g11zz̄ +

g02
2
z̄2 + O(|z|3), (3.14)

where λ = λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0, and gij = gij(α),
can be transformed by an invertible parameter-dependent change of complex
coordinate

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,

for all sufficiently small |α|, into an equation without quadratic terms:

ẇ = λw + O(|w|3).

Proof:
The inverse change of variable is given by the expression

w = z − h20

2
z2 − h11zz̄ − h02

2
z̄2 + O(|z|3).

Therefore,
ẇ = ż − h20zż − h11(żz̄ + z ˙̄z)− h02z̄ ˙̄z + · · ·
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= λz +
(g20

2
− λh20

)
z2 +

(
g11 − λh11 − λ̄h11

)
zz̄ +

(g02
2
− λ̄h02

)
z̄2 + · · ·

= λw+
1
2

(g20−λh20)w2+(g11−λ̄h11)ww̄+
1
2

(g02−(2λ̄−λ)h02)w̄2+O(|w|3).

Thus, by setting

h20 =
g20
λ
, h11 =

g11
λ̄
, h02 =

g02
2λ̄− λ

,

we “kill” all the quadratic terms in (3.14). These substitutions are correct
because the denominators are nonzero for all sufficiently small |α| since
λ(0) = iω0 with ω0 > 0. ✷

Remarks:
(1) The resulting coordinate transformation is polynomial with coeffi-

cients that are smoothly dependent on α. The inverse transformation has
the same property but it is not polynomial. Its form can be obtained by
the method of unknown coefficients. In some neighborhood of the origin
the transformation is near-identical because of its linear part.

(2) Notice that the transformation changes the coefficients of the cubic
(as well as higher-order) terms of (3.14). ♦

Assuming that we have removed all quadratic terms, let us try to elim-
inate the cubic terms as well. This is “almost” possible: There is only one
“resistant” term, as the following lemma shows.

Lemma 3.5 The equation

ż = λz +
g30
6
z3 +

g21
2
z2z̄ +

g12
2
zz̄2 +

g03
6
z̄3 + O(|z|4),

where λ = λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0, and gij = gij(α),
can be transformed by an invertible parameter-dependent change of complex
coordinate

z = w +
h30

6
w3 +

h21

2
w2w̄ +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |α|, into an equation with only one cubic term:

ẇ = λw + c1w
2w̄ + O(|w|4),

where c1 = c1(α).

Proof:
The inverse transformation is

w = z − h30

6
z3 − h21

2
z2z̄ − h12

2
zz̄2 − h03

6
z̄3 + O(|z|4).
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Therefore,

ẇ = ż − h30

2
z2ż − h21

2
(2zz̄ż + z2 ˙̄z)− h12

2
(żz̄2 + 2zz̄ ˙̄z)− h03

2
z̄2 ˙̄z + · · ·

= λz +
(
g30
6
− λh30

2

)
z3 +

(
g21
2
− λh21 − λ̄h21

2

)
z2z̄

+
(
g12
2
− λh12

2
− λ̄h12

)
zz̄2 +

(
g03
6
− λ̄h03

2

)
z̄3 + · · ·

= λw +
1
6

(g30 − 2λh30)w3 +
1
2

(g21 − (λ + λ̄)h21)w2w̄

+
1
2

(g12 − 2λ̄h12)ww̄2 +
1
6

(g03 + (λ− 3λ̄)h03)w̄3 + O(|w|4).

Thus, by setting

h30 =
g30
2λ

, h12 =
g12
2λ̄

, h03 =
g03

3λ̄− λ
,

we can annihilate all cubic terms in the resulting equation except the w2w̄
-term, which we have to treat separately. The substitutions are valid since
all the involved denominators are nonzero for all sufficiently small |α|.

One can also try to eliminate the w2w̄-term by formally setting

h21 =
g21
λ + λ̄

.

This is possible for small α = 0, but the denominator vanishes at α = 0:
λ(0) + λ̄(0) = iω0 − iω0 = 0. To obtain a transformation that is smoothly
dependent on α, set h21 = 0, which results in

c1 =
g21
2
. ✷

Remark:
The remaining cubic w2w̄-term is called a resonant term. Note that its

coefficient is the same as the coefficient of the cubic term z2z̄ in the original
equation in Lemma 3.5. ♦

We now combine the two previous lemmas.

Lemma 3.6 (Poincaré normal form for the Hopf bifurcation) The
equation

ż = λz +
∑

2≤k+l≤3

1
k!l!

gklz
kz̄l + O(|z|4), (3.15)
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ż = λz +
∑

2≤k+l≤3

1
k!l!

gklz
kz̄l + O(|z|4), (3.15)



3.5 Generic Hopf bifurcation 97

where λ = λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0, and gij = gij(α),
can be transformed by an invertible parameter-dependent change of complex
coordinate, smoothly depending on the parameter,

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2

+
h30

6
w3 +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |α|, into an equation with only the resonant cubic
term:

ẇ = λw + c1w
2w̄ + O(|w|4), (3.16)

where c1 = c1(α).

Proof:
Obviously, a superposition of the transformations defined in Lemmas 3.4

and 3.5 does the job. First, perform the transformation

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2, (3.17)

with
h20 =

g20
λ
, h11 =

g11
λ̄
, h02 =

g02
2λ̄− λ

,

defined in Lemma 3.4. This annihilates all the quadratic terms but also
changes the coefficients of the cubic terms. The coefficient of w2w̄ will be
1
2 g̃21, say, instead of 1

2g21. Then make the transformation from Lemma 3.5
that eliminates all the cubic terms but the resonant one. The coefficient of
this term remains 1

2 g̃21. Since terms of order four and higher appearing in
the superposition affect only O(|w|4) terms in (3.16), they can be truncated.
✷

Thus, all we need to compute to get the coefficient c1 in terms of the
given equation (3.15) is a new coefficient 1

2 g̃21 of the w2w̄-term after the
quadratic transformation (3.17). We can do this computation in the same
manner as in Lemmas 3.4 and 3.5, namely, inverting (3.17). Unfortunately,
now we have to know the inverse map up to and including cubic terms.2

However, there is a possibility to avoid explicit inverting of (3.17).
Indeed, we can express ż in terms of w, w̄ in two ways. One way is to

substitute (3.17) into the original equation (3.15). Alternatively, since we

2Actually, only the “resonant” cubic term of the inverse is required:

w = z − h20

2
z2 − h11zz̄ − h02

2
z̄2 +

1
2
(3h11h20 + 2|h11|2 + |h02|2)z2z̄ + · · · ,

where the dots now mean all undisplayed terms.
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know the resulting form (3.16) to which (3.15) can be transformed, ż can
be computed by differentiating (3.17),

ż = ẇ + h20wẇ + h11(w ˙̄w + w̄ẇ) + h02 ˙̄w,

and then by substituting ẇ and its complex conjugate, using (3.16). Com-
paring the coefficients of the quadratic terms in the obtained expressions
for ż gives the above formulas for h20, h11, and h02, while equating the
coefficients in front of the w|w|2-term leads to

c1 =
g20g11(2λ + λ̄)

2|λ|2 +
|g11|2
λ

+
|g02|2

2(2λ− λ̄)
+
g21
2
.

This formula gives us the dependence of c1 on α if we recall that λ and gij
are smooth functions of the parameter. At the bifurcation parameter value
α = 0, the previous equation reduces to

c1(0) =
i

2ω0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+
g21
2
. (3.18)

Now we want to transform the Poincaré normal form into the normal
form studied in the previous section.

Lemma 3.7 Consider the equation

dw

dt
= (µ(α) + iω(α))w + c1(α)w|w|2 + O(|w|4),

where µ(0) = 0, and ω(0) = ω0 > 0.
Suppose µ′(0) = 0 and Re c1(0) = 0. Then, the equation can be trans-

formed by a parameter-dependent linear coordinate transformation, a time
rescaling, and a nonlinear time reparametrization into an equation of the
form

du

dθ
= (β + i)u + su|u|2 + O(|u|4),

where u is a new complex coordinate, and θ, β are the new time and pa-
rameter, respectively, and s = sign Re c1(0) = ±1.

Proof:
Step 1 (Linear time scaling). Introduce the new time τ = ω(α)t. The time
direction is preserved since ω(α) > 0 for all sufficiently small |α|. Then,

dw

dτ
= (β + i)w + d1(β)w|w|2 + O(|w|4),

where

β = β(α) =
µ(α)
ω(α)

, d1(β) =
c1(α(β))
ω(α(β))

.



98 3. One-Parameter Bifurcations of Equilibria

know the resulting form (3.16) to which (3.15) can be transformed, ż can
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We can consider β as a new parameter because

β(0) = 0, β′(0) =
µ′(0)
ω(0)

= 0,

and therefore the Inverse Function Theorem guarantees local existence and
smoothness of α as a function of β. Notice that d1 is complex.

Step 2 (Nonlinear time reparametrization). Change the time parametriza-
tion along the orbits by introducing a new time θ = θ(τ, β), where

dθ = (1 + e1(β)|w|2) dτ

with e1(β) = Im d1(β). The time change is a near-identity transformation
in a small neighborhood of the origin. Using the new definition of the time
we obtain

dw

dθ
= (β + i)w + l1(β)w|w|2 + O(|w|4),

where l1(β) = Re d1(β)− βe1(β) is real and

l1(0) =
Re c1(0)
ω(0)

. (3.19)

Step 3 (Linear coordinate scaling). Finally, introduce a new complex vari-
able u:

w =
u√|l1(β)| ,

which is possible due to Re c1(0) = 0 and, thus, l1(0) = 0. The equation
then takes the required form:

du

dθ
= (β + i)u +

l1(β)
|l1(β)|u|u|

2 + O(|u|4) = (β + i)u + su|u|2 + O(|u|4),

with s = sign l1(0) = sign Re c1(0). ✷

Definition 3.3 The real function l1(β) is called the first Lyapunov coeffi-
cient.

It follows from (3.19) that the first Lyapunov coefficient at β = 0 can be
computed by the formula

l1(0) =
1

2ω2
0

Re(ig20g11 + ω0g21). (3.20)

Thus, we need only certain second- and third-order derivatives of the right-
hand sides at the bifurcation point to compute l1(0). Recall that the value
of l1(0) does depend on the normalization of the eigenvectors q and p, while
its sign (which is what only matters in the bifurcation analysis) is invariant
under scaling of q, p obeying the relative normalization 〈p, q〉 = 1. Notice
that the equation of u with s = −1 written in real form coincides with
system (3.10) from the previous section. We now summarize the obtained
results in the following theorem.
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Theorem 3.3 Suppose a two-dimensional system

dx

dt
= f(x, α), x ∈ R

2, α ∈ R
1, (3.21)

with smooth f , has for all sufficiently small |α| the equilibrium x = 0 with
eigenvalues

λ1,2(α) = µ(α)± iω(α),

where µ(0) = 0, ω(0) = ω0 > 0.
Let the following conditions be satisfied:

(B.1) l1(0) = 0, where l1 is the first Lyapunov coefficient;
(B.2) µ′(0) = 0.

Then, there are invertible coordinate and parameter changes and a time
reparameterization transforming (3.21) into

d

dτ

(
y1
y2

)
=

(
β −1
1 β

)(
y1
y2

)
± (y2

1 + y2
2)

(
y1
y2

)
+ O(‖y‖4). ✷

Using Lemma 3.2, we can drop the O(‖y‖4) terms and finally arrive at
the following general result.

Theorem 3.4 (Topological normal form for the Hopf bifurcation)
Any generic two-dimensional, one-parameter system

ẋ = f(x, α),

having at α = 0 the equilibrium x = 0 with eigenvalues

λ1,2(0) = ±iω0, ω0 > 0,

is locally topologically equivalent near the origin to one of the following
normal forms:(

ẏ1
ẏ2

)
=

(
β −1
1 β

)(
y1
y2

)
± (y2

1 + y2
2)

(
y1
y2

)
. ✷

Remark:
The genericity conditions assumed in Theorem 3.4 are the nondegeneracy

condition (B.1) and the transversality condition (B.2) from Theorem 3.3.
♦

The preceding two theorems together with the normal form analysis of
the previous section and formula (3.20) for l1(0) provide us with all the nec-
essary tools for analysis of the Hopf bifurcation in generic two-dimensional
systems. In Chapter 5 we will see how to deal with n-dimensional systems
where n > 2.
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Example 3.1 (Hopf bifurcation in a predator-prey model) Con-
sider the following system of two differential equations:

ẋ1 = rx1(1− x1)− cx1x2

α + x1
,

(3.22)

ẋ2 = −dx2 +
cx1x2

α + x1
.

The system describes the dynamics of a simple predator-prey ecosystem
(see, e.g., Holling [1965]). Here x1 and x2 are (scaled) population numbers,
and r, c, d, and α are parameters characterizing the behavior of isolated
populations and their interaction. Let us consider α as a control parameter
and assume c > d.

To simplify calculations further, let us consider a polynomial system that
has for x1 > −α the same orbits as the original one (i.e., orbitally equiva-
lent, see Chapter 2):{

ẋ1 = rx1(α + x1)(1− x1)− cx1x2,
ẋ2 = −αdx2 + (c− d)x1x2

(3.23)

(this system is obtained by multiplying both sides of the original system
by the function (α + x1) and introducing a new time variable τ by dt =
(α + x1) dτ).

System (3.23) has a nontrivial equilibrium

E0 =
(

αd

c− d
,

rα

c− d

[
1− αd

c− d

])
.

The Jacobian matrix evaluated at this equilibrium is

A(α) =

 αrd(c + d)
(c− d)2

[
c− d
c + d

− α
]

− αcd
c− d

αr(c− d(1 + α))
c− d

0

 ,

and thus

µ(α) =
σ(α)

2
=
αrd(c + d)
2(c− d)2

[
c− d

c + d
− α

]
.

We have µ(α0) = 0 for

α0 =
c− d

c + d
.

Moreover,

ω2(α0) =
rc2d(c− d)

(c + d)3
> 0. (3.24)



3.5 Generic Hopf bifurcation 101

Example 3.1 (Hopf bifurcation in a predator-prey model) Con-
sider the following system of two differential equations:
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Therefore, at α = α0 the equilibrium E0 has eigenvalues λ1,2(α0) = ±iω(α0)
and a Hopf bifurcation takes place.3 The equilibrium is stable for α > α0
and unstable for α < α0. Notice that the critical value of α corresponds
to the passing of the line defined by ẋ2 = 0 through the maximum of the
curve defined by ẋ1 = 0 (see Figure 3.10). Thus, if the line ẋ2 = 0 is to the

x1 = 0
.

x2 = 0
.

x1 
(0)

x2
(0)

x2

x1 

E0

10

FIGURE 3.10. Zero-isoclines at the Hopf bifurcation.

right of the maximum, the point is stable, while if this line is to the left,
the point is unstable. To apply the normal form theorem to the analysis of
this Hopf bifurcation, we have to check whether the genericity conditions
of Theorem 3.3 are satisfied. The transversality condition (B.2) is easy to
verify:

µ′(α0) = −α0rd(c + d)
2(c− d)2

< 0.

To compute the first Lyapunov coefficient, fix the parameter α at its
critical value α0. At α = α0, the nontrivial equilibrium E0 at α = α0 has
the coordinates

x
(0)
1 =

d

c + d
, x

(0)
2 =

rc

(c + d)2
.

Translate the origin of the coordinates to this equilibrium by the change of
variables {

x1 = x
(0)
1 + ξ1,

x2 = x
(0)
2 + ξ2.

This transforms system (3.23) into

ξ̇1 = − cd

c + d
ξ2 − rd

c + d
ξ21 − cξ1ξ2 − rξ31 ≡ F1(ξ1, ξ2),

3Since (3.23) is only orbitally equivalent to (3.22), the value of ω(α0) given by
(3.24) cannot be used directly to evaluate the period of small oscillations around
E0 in the original system.
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ξ̇2 =
cr(c− d)
(c + d)2

ξ1 + (c− d)ξ1ξ2 ≡ F2(ξ1, ξ2).

This system can be represented as

ξ̇ = Aξ +
1
2
B(ξ, ξ) +

1
6
C(ξ, ξ, ξ),

where A = A(α0), and the multilinear functions B and C take on the
planar vectors ξ = (ξ1, ξ2)T , η = (η1, η2)T , and ζ = (ζ1, ζ2)T the values

B(ξ, η) =

(
− 2rd

(c + d)ξ1η1 − c(ξ1η2 + ξ2η1)

(c− d)(ξ1η2 + ξ2η1)

)
and

C(ξ, η, ζ) =
( −6rξ1η1ζ1

0

)
.

Write the matrix A(α0) in the form

A =

 0 − cd
c + d

ω2(c + d)
cd

0

 ,

where ω2 is given by formula (3.24).4 Now it is easy to check that complex
vectors

q ∼
(

cd
−iω(c + d)

)
, p ∼

(
ω(c + d)
−icd

)
,

are proper eigenvectors:

Aq = iωq, AT p = −iωp.
To achieve the necessary normalization 〈p, q〉 = 1, we can take, for example,

q =
(

cd
−iω(c + d)

)
, p =

1
2ωcd(c + d)

(
ω(c + d)
−icd

)
.

The hardest part of the job is done, and now we can simply calculate5

g20 = 〈p,B(q, q)〉 =
cd(c2 − d2 − rd) + iωc(c + d)2

(c + d)
,

4It is always useful to express the Jacobian matrix using ω, since this simplifies
expressions for the eigenvectors.

5Another way to compute g20, g11, and g21 (which may be simpler if we use a
symbolic manipulation software) is to define the complex-valued function

G(z, w) = p̄1F1(zq1 + wq̄1, zq2 + wq̄2) + p̄2F2(zq1 + wq̄1, zq2 + wq̄2),

where p, q are given above, and to evaluate its formal partial derivatives with
respect to z, w at z = w = 0, obtaining g20 = Gzz, g11 = Gzw, and g21 = Gzzw.
In this way no multilinear functions are necessary. See Exercise 4.
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g11 = 〈p,B(q, q̄)〉 = − rcd2

(c + d)
, g21 = 〈p, C(q, q, q̄)〉 = −3rc2d2,

and compute the first Lyapunov coefficient by formula (3.20),

0E
E 0

x2x2

x1x1

α < α 0 α > α 0

0 01 1

FIGURE 3.11. Hopf bifurcation in the predator-prey model.

l1(α0) =
1

2ω2 Re(ig20g11 + ωg21) = −rc
2d2

ω
< 0.

It is clear that l1(α0) < 0 for all combinations of the fixed parameters.
Thus, the nondegeneracy condition (B.1) of Theorem 3.3 holds as well.
Therefore, a unique and stable limit cycle bifurcates from the equilibrium
via the Hopf bifurcation for α < α0 (see Figure 3.11). ✸

3.6 Exercises

(1) (Fold bifurcation in ecology) Consider the following differential
equation, which models a single population under a constant harvest:

ẋ = rx
(

1− x

K

)
− α,

where x is the population number; r and K are the intrinsic growth rate and
the carrying capacity of the population, respectively, and α is the harvest
rate, which is a control parameter. Find a parameter value α0 at which
the system has a fold bifurcation, and check the genericity conditions of
Theorem 3.1. Based on the analysis, explain what might be a result of
overharvesting on the ecosystem dynamics. Is the bifurcation catastrophic
in this example?

(2) (Complex notation) Verify that

ż = iz + (i + 1)z2 + 2izz̄ + (i− 1)z̄2
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is a complex form of the system(
ẋ1
ẋ2

)
=

(
1 2

−1 −1

)(
x1
x2

)
+

6√
3

(
0

x1x2

)
,

provided that the eigenvectors are selected in the form

q =
1

2
√

3

(
2

−1 + i

)
, p =

3
2
√

3

(
1 + i

2i

)
.

How will the complex form change if one instead adopts a different setting
of q, p satisfying 〈p, q〉 = 1?

(3) (Nonlinear stability) Write the system{
ẋ = −y − xy + 2y2,
ẏ = x− x2y,

in terms of the complex coordinate z = x + iy, and compute the normal
form coefficient c1(0) by formula (3.18). Is the origin stable?

(4) (Hopf bifurcation in the Brusselator) Consider the Brusselator
system (1.8) from Chapter 1:{

ẋ1 = A− (B + 1)x1 + x2
1x2 ≡ F1(x1, x2, A,B),

ẋ2 = Bx1 − x2
1x2 ≡ F2(x1, x2, A,B).

Fix A > 0 and take B as a bifurcation parameter. Using one of the available
computer algebra systems, prove that at B = 1 +A2 the system exhibits a
supercritical Hopf bifurcation.

(Hint: The following sequence of MAPLE commands solves the problem:

> with(linalg);
> readlib(mtaylor);
> readlib(coeftayl);

The first command above allows us to use the MAPLE linear alge-
bra package. The other two commands load the procedures mtaylor and
coeftayl, which compute the truncated multivariate Taylor series expan-
sion and its individual coefficients, respectively, from the MAPLE library.

> F[1]:=A-(B+1)*X[1]+X[1]ˆ2*X[2];
> F[2]:=B*X[1]-X[1]ˆ2*X[2];
> J:=jacobian([F[1],F[2]],[X[1],X[2]]);
> K:=transpose(J);

By these commands we input the right-hand sides of the system into
MAPLE and compute the Jacobian matrix and its transpose.
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> sol:=solve({F[1]=0,F[2]=0,trace(J)=0},{X[1],X[2],B});
> assign(sol);
> assume(A>0);
> omega:=sqrt(det(J));

These commands solve the following system of equations{
F (x1, x2, A,B) = 0,

tr Fx(x1, x2, A,B) = 0,

for (x1, x2, B) and allow us to check that detFx = A2 > 0 at the found
solution. Thus, at B = 1 + A2 the Brusselator has the equilibrium

X =
(
A,

1 + A2

A

)T

with purely imaginary eigenvalues λ1,2 = ±iω, ω = A > 0.

> ev:=eigenvects(J,’radical’);
> q:=ev[1][3][1];
> et:=eigenvects(K,’radical’);
> P:=et[2][3][1];

These commands show that

q =
(
− iA + A2

1 + A2 , 1
)T

, p =
(−iA + A2

A2 , 1
)T

,

are the critical eigenvectors6 of the Jacobian matrix J = Fx and its trans-
pose,

Jq = iωq, JT p = −iωp.
> s1:=simplify(evalc(conjugate(P[1])*q[1]+conjugate(P[2]*q[2]));
> c:=simplify(evalc(1/conjugate(s1)));
> p[1]:=simplify(evalc(c*P[1]);
> p[2]:=simplify(evalc(c*P[2]);
> simplify(evalc(conjugate(p[1])*q[1]+conjugate(p[2])*q[2]));

By the commands above, we achieve the normalization 〈p, q〉 = 1, finally
taking

q =
(
− iA + A2

1 + A2 , 1
)T

, p =
(
− i(1 + A2)

2A
,

1− iA

2

)T

.

6Some implementations of MAPLE may produce the eigenvectors in a different
form.
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> F[1]:=A-(B+1)*x[1]+x[1]ˆ2*x[2];
> F[2]:=B*x[1]-x[1]ˆ2*x[2];
> x[1]:=evalc(X[1]+z*q[1]+z1*conjugate(q[1]));
> x[2]:=evalc(X[2]+z*q[2]+z1*conjugate(q[2]));
> H:=simplify(evalc(conjugate(p[1])*F[1]+conjugate(p[2])*F[2]));

By means of these commands, we compose x = X+zq+ z̄q̄ and evaluate
the function

H(z, z̄) = 〈p, F (X + zq + z̄q̄, A, 1 + A2)〉.
(In the MAPLE commands, z1 stands for z̄.)

> g[2,0]:=simplify(2*evalc(coeftayl(H,[z,z1]=[0,0],[2,0])));
> g[1,1]:=simplify(evalc(coeftayl(H,[z,z1]=[0,0],[1,1])));
> g[2,1]:=simplify(2*evalc(coeftayl(H,[z,z1]=[0,0],[2,1])));
> x[2]:=evalc(X[2]+z*q[2]+z1*conjugate(q[2]));

The above commands compute the needed Taylor expansion of H(z, z̄)
at (z, z̄) = (0, 0),

H(z, z̄) = iωz +
∑

2≤j+k≤3

1
j!k!

gjkz
kz̄k + O(|z|4),

giving

g20 = A− i, g11 =
(A− i)(A2 − 1)

1 + A2 , g21 = −A(3A− i)
1 + A2 .

> l[1]:=factor(1/(2*omegaˆ2)*Re(I*g[2,0]*g[1,1]+omega*g{2,1]));

This final command computes the first Lyapunov coefficient

l1 =
1

2ω2 Re(ig20g11 + ωg2,1) = − 2 + A2

2A(1 + A2)
< 0,

and allows us to check that it is negative.)

(5) Check that each of the following systems has an equilibrium that ex-
hibits the Hopf bifurcation at some value of α, and compute the first Lya-
punov coefficient:

(a) Rayleigh’s equation:

ẍ + ẋ3 − 2αẋ + x = 0;

(Hint: Introduce y = ẋ and rewrite the equation as a system of two differ-
ential equations.)

(b) Van der Pol’s oscillator:

ÿ − (α− y2)ẏ + y = 0;
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(c) Bautin’s example:{
ẋ = y,
ẏ = −x + αy + x2 + xy + y2;

(d) Advertising diffusion model [Feichtinger 1992]:{
ẋ1 = α[1− x1x

2
2 + A(x2 − 1)],

ẋ2 = x1x
2
2 − x2.

(6) Suppose that a system at the critical parameter values corresponding
to the Hopf bifurcation has the form

ẋ = −ωy +
1
2
fxxx

2 + fxyxy +
1
2
fyyy

2

+
1
6
fxxxx

3 +
1
2
fxxyx

2y +
1
2
fxyyxy

2 +
1
6
fyyyy

3 + · · · ,

ẏ = ωx +
1
2
gxxx

2 + gxyxy +
1
2
gyyy

2

+
1
6
gxxxx

3 +
1
2
gxxyx

2y +
1
2
gxyyxy

2 +
1
6
gyyyy

3 + · · · .

Compute Re c1(0) in terms of the f ’s and g’s. (Hint: See Guckenheimer
& Holmes [1983, p. 156]. To apply the resulting formula, one needs to
transform the system explicitly into its eigenbasis, which can always be
avoided by using eigenvectors and complex notation, as described in this
chapter.)

3.7 Appendix 1: Proof of Lemma 3.2

The following statement, which is Lemma 3.2 rewritten in complex form,
will be proved in this appendix.

Lemma 3.8 The system

ż = (α + i)z − z|z|2 + O(|z|4) (A.1)

is locally topologically equivalent near the origin to the system

ż = (α + i)z − z|z|2. (A.2)

Proof:
Step 1 (Existence and uniqueness of the cycle). Write system (A.1) in polar
coordinates (ρ, ϕ): {

ρ̇ = ρ(α− ρ2) + Φ(ρ, ϕ),
ϕ̇ = 1 + Ψ(ρ, ϕ), (A.3)
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0ρ1ρ ρ
ϕ

FIGURE 3.12. Poincaré map for the Hopf bifurcation.

where Φ = O(|ρ|4),Ψ = O(|ρ|3), and the α-dependence of these functions
is not indicated to simplify notations. An orbit of (A.3) starting at (ρ, ϕ) =
(ρ0, 0) has the following representation (see Figure 3.12): ρ = ρ(ϕ; ρ0), ρ0 =
ρ(0; ρ0) with ρ satisfying the equation

dρ

dϕ
=
ρ(α− ρ2) + Φ

1 + Ψ
= ρ(α− ρ2) + R(ρ, ϕ), (A.4)

where R = O(|ρ|4). Notice that the transition from (A.3) to (A.4) is equiv-
alent to the introduction of a new time parametrization in which ϕ̇ = 1,
which implies that the return time to the half-axis ϕ = 0 is the same for
all orbits starting on this axis with ρ0 > 0. Since ρ(ϕ; 0) ≡ 0, we can write
the Taylor expansion for ρ(ϕ; ρ0),

ρ = u1(ϕ)ρ0 + u2(ϕ)ρ2
0 + u3(ϕ)ρ3

0 + O(|ρ0|4). (A.5)

Substituting (A.5) into (A.4) and solving the resulting linear differential
equations at corresponding powers of ρ0 with initial conditions u1(0) =
1, u2(0) = u3(0) = 0, we get

u1(ϕ) = eαϕ, u2(ϕ) ≡ 0, u3(ϕ) = eαϕ
1− e2αϕ

2α
.

Notice that these expressions are independent of the term R(ρ, ϕ). There-
fore, the return map ρ0 �→ ρ1 = ρ(2π, ρ0) has the form

ρ1 = e2παρ0 − e2πα[2π + O(α)]ρ3
0 + O(ρ4

0) (A.6)

for all R = O(ρ4). The map (A.6) can easily be analyzed for sufficiently
small ρ0 and |α|. There is a neighborhood of the origin in which the map
has only a trivial fixed point for small α < 0 and an extra fixed point,
ρ
(0)
0 =

√
α + · · ·, for small α > 0 (see Figure 3.13). The stability of the

fixed points is also easily obtained from (A.6). Taking into account that a
positive fixed point of the map corresponds to a limit cycle of the system,
we can conclude that system (A.3) (or (A.1)) with any O(|z|4) terms has
a unique (stable) limit cycle bifurcating from the origin and existing for
α > 0 as in system (A.2). Therefore, in other words, higher-order terms do
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0
(0)ρ    (α)

ρ1

α < 0

α = 0

α > 0

ρ0

FIGURE 3.13. Fixed point of the return map.

not affect the limit cycle bifurcation in some neighborhood of z = 0 for |α|
sufficiently small.

Step 2 (Construction of a homeomorphism). The established existence and
uniqueness of the limit cycle is enough for all applications. Nevertheless,
extra work must be done to prove the topological equivalence of the phase
portraits.

ρ 0 ρ 0

τ 0 τ 0

x  , x1 2(          ) x  , x1 2(          )~ ~

FIGURE 3.14. Construction of the homeomorphism near the Hopf bifurcation.

Fix α small but positive. Both systems (A.1) and (A.2) have a limit cycle
in some neighborhood of the origin. Assume that the time reparametriza-
tion resulting in the constant return time 2π is performed in system (A.1)
(see the previous step). Also, apply a linear scaling of the coordinates in
system (A.1) such that the point of intersection of the cycle and the hori-
zontal half-axis is at x1 =

√
α.

Define a map z �→ z̃ by the following construction. Take a point z =
x1 + ix2 and find values (ρ0, τ0), where τ0 is the minimal time required
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for an orbit of system (A.2) to approach the point z starting from the
horizontal half-axis with ρ = ρ0. Now, take the point on this axis with
ρ = ρ0 and construct an orbit of system (A.1) on the time interval [0, τ0]
starting at this point. Denote the resulting point by z̃ = x̃1+ix̃2 (see Figure
3.14). Set z̃ = 0 for z = 0.

The map constructed is a homeomorphism that, for α > 0, maps orbits
of system (A.2) in some neighborhood of the origin into orbits of (A.1)
preserving time direction. The case α < 0 can be considered in the same
way without rescaling the coordinates. ✷

3.8 Appendix 2: Bibliographical notes

The fold bifurcation of equilibria has essentially been known for centuries.
Since any scalar system can be written as ẋ = −ψx(x, α), for some func-
tion ψ, results on the classification of generic parameter-dependent gradient
systems from catastrophe theory are relevant. Thus, the topological nor-
mal form for the fold bifurcation appeared in the list of seven elementary
catastrophes by Thom [1972]. Actually, there are many interconnections
between bifurcation theory of dynamical systems and singularity theory
of smooth functions. The books by Poston & Stewart [1978] and Arnold
[1984] are recommended as an introduction to this latter subject. It should
be noticed, however, that most results from singularity theory are directly
applicable to the analysis of equilibria but not to the analysis of phase
portraits.

The normalization technique used in the analysis of limit cycle bifur-
cations was developed by Poincaré [1879]. A general presentation of the
theory of normal forms can be found in Arnold [1983], Guckenheimer &
Holmes [1983], and Vanderbauwhede [1989], where it is also explained how
to apply this theory to local bifurcation problems. Actually, for the limit
cycle bifurcation analysis only a small part of this theory is really required.
Theorem 3.4 was stated and briefly proved by Arnold [1972, 1983]. We
follow his approach.

Phase-portrait bifurcations in a generic one-parameter system on the
plane near an equilibrium with purely imaginary eigenvalues was studied
first by Andronov & Leontovich [1939]. They used a succession function
(return map) technique originally due to Lyapunov [1892] without benefit-
ing from the normalization. An explicit expression for the first Lyapunov
coefficient in terms of Taylor coefficients of a general planar system was
obtained by Bautin [1949]. An exposition of the results by Andronov and
his co-workers on this bifurcation can be found in Andronov et al. [1973].

Hopf [1942] proved the appearance of a family of periodic solutions of
increasing amplitude in n-dimensional systems having an equilibrium with
a pair of purely imaginary eigenvalues at some critical parameter value.
He did not consider bifurcations of the whole phase portrait. An English-
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language translation of Hopf’s paper is included in Marsden & McCracken
[1976]. This very useful book also contains a derivation of the first Lyapunov
coefficient and a proof of Hopf’s result based on the Implicit Function
Theorem.

A much simpler derivation of the Lyapunov coefficient (actually, c1) is
given by Hassard, Kazarinoff & Wan [1981] using the complex form of
the Poincaré normalization. We essentially use their technique, although
we do not assume that the Poincaré normal form is known a priori. For-
mulas to compute Taylor coefficients of the complex equation without an
intermediate transformation of the system into its eigenbasis can also be ex-
tracted from their book (applying the center manifold reduction technique
to the trivial planar case; see Chapter 5). We also extensively use time
reparametrization to obtain a simpler normal form, which is then used to
prove existence and uniqueness of the cycle and in the analysis of the whole
phase-portrait bifurcations (see Appendix 1).

There exist other approaches to prove the generation of periodic solutions
under the Hopf conditions. An elegant one is to reformulate the problem as
that of finding a family of solutions of an abstract equation in a functional
space of periodic functions and to apply the Lyapunov-Schmidt reduction.
This approach, allowing a generalization to infinite-dimensional dynamical
systems, is far beyond the scope of this book (see, e.g., Chow & Hale [1982]
or Iooss & Joseph [1980]).
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we do not assume that the Poincaré normal form is known a priori. For-
mulas to compute Taylor coefficients of the complex equation without an
intermediate transformation of the system into its eigenbasis can also be ex-
tracted from their book (applying the center manifold reduction technique
to the trivial planar case; see Chapter 5). We also extensively use time
reparametrization to obtain a simpler normal form, which is then used to
prove existence and uniqueness of the cycle and in the analysis of the whole
phase-portrait bifurcations (see Appendix 1).

There exist other approaches to prove the generation of periodic solutions
under the Hopf conditions. An elegant one is to reformulate the problem as
that of finding a family of solutions of an abstract equation in a functional
space of periodic functions and to apply the Lyapunov-Schmidt reduction.
This approach, allowing a generalization to infinite-dimensional dynamical
systems, is far beyond the scope of this book (see, e.g., Chow & Hale [1982]
or Iooss & Joseph [1980]).



4
One-Parameter Bifurcations of
Fixed Points in Discrete-Time
Dynamical Systems

In this chapter, which is organized very much like Chapter 3, we present
bifurcation conditions defining the simplest bifurcations of fixed points in
n-dimensional discrete-time dynamical systems: the fold, the flip, and the
Neimark-Sacker bifurcations. Then we study these bifurcations in the low-
est possible dimension in which they can occur: the fold and flip bifurcations
for scalar systems and the Neimark-Sacker bifurcation for planar systems.
In Chapter 5 it will be shown how to apply these results to n-dimensional
systems when n is larger than one or two, respectively.

4.1 Simplest bifurcation conditions

Consider a discrete-time dynamical system depending on a parameter

x �→ f(x, α), x ∈ R
n, α ∈ R

1,

where the map f is smooth with respect to both x and α. Sometimes we
will write this system as

x̃ = f(x, α), x, x̃ ∈ R
n, α ∈ R

1,

where x̃ denotes the image of x under the action of the map. Let x = x0 be
a hyperbolic fixed point of the system for α = α0. Let us monitor this fixed
point and its multipliers while the parameter varies. It is clear that there
are, generically, only three ways in which the hyperbolicity condition can
be violated. Either a simple positive multiplier approaches the unit circle
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FIGURE 4.1. Codim 1 critical cases.

and we have µ1 = 1 (see Figure 4.1(a)), or a simple negative multiplier
approaches the unit circle and we have µ1 = −1 (Figure 4.1(b)), or a pair
of simple complex multipliers reaches the unit circle and we have µ1,2 =
e±iθ0 , 0 < θ0 < π (Figure 4.1(c)), for some value of the parameter. It is
obvious that one needs more parameters to allocate extra eigenvalues on
the unit circle.

The rest of the chapter is devoted to the proof that a nonhyperbolic
fixed point satisfying one of the above conditions is structurally unstable,
and to the analysis of the corresponding bifurcations of the local phase
portrait under variation of the parameter. Let us finish this section with
the following definitions, the reasoning for which will become clear later.

Definition 4.1 The bifurcation associated with the appearance of µ1 = 1
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation is also referred to as a limit point, saddle-node bifurca-

tion, turning point, among others. ♦
Definition 4.2 The bifurcation associated with the appearance of µ1 = −1
is called a flip (or period-doubling) bifurcation.

Definition 4.3 The bifurcation corresponding to the presence of µ1,2 =
e±iθ0 , 0 < θ0 < π, is called a Neimark-Sacker (or torus) bifurcation.

Notice that the fold and flip bifurcations are possible if n ≥ 1, but for
the Neimark-Sacker bifurcation we need n ≥ 2.

4.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

x �→ α + x + x2 ≡ f(x, α) ≡ fα(x). (4.1)

The map fα is invertible for |α| small in a neighborhood of the origin. The



114 4. One-Parameter Bifurcations of Fixed Points

θ0

µ1

µ1 µ1

µ2

(a) (b) (c)

1 -1

FIGURE 4.1. Codim 1 critical cases.

and we have µ1 = 1 (see Figure 4.1(a)), or a simple negative multiplier
approaches the unit circle and we have µ1 = −1 (Figure 4.1(b)), or a pair
of simple complex multipliers reaches the unit circle and we have µ1,2 =
e±iθ0 , 0 < θ0 < π (Figure 4.1(c)), for some value of the parameter. It is
obvious that one needs more parameters to allocate extra eigenvalues on
the unit circle.

The rest of the chapter is devoted to the proof that a nonhyperbolic
fixed point satisfying one of the above conditions is structurally unstable,
and to the analysis of the corresponding bifurcations of the local phase
portrait under variation of the parameter. Let us finish this section with
the following definitions, the reasoning for which will become clear later.

Definition 4.1 The bifurcation associated with the appearance of µ1 = 1
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation is also referred to as a limit point, saddle-node bifurca-

tion, turning point, among others. ♦
Definition 4.2 The bifurcation associated with the appearance of µ1 = −1
is called a flip (or period-doubling) bifurcation.

Definition 4.3 The bifurcation corresponding to the presence of µ1,2 =
e±iθ0 , 0 < θ0 < π, is called a Neimark-Sacker (or torus) bifurcation.

Notice that the fold and flip bifurcations are possible if n ≥ 1, but for
the Neimark-Sacker bifurcation we need n ≥ 2.

4.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

x �→ α + x + x2 ≡ f(x, α) ≡ fα(x). (4.1)

The map fα is invertible for |α| small in a neighborhood of the origin. The



4.2 The normal form of the fold bifurcation 115

2

x(   )fα x(   )fα x(   )fα

x~ x~ x~

x1

x

µ = 1

x

α < 0 α = 0 α > 0

x
0

x

FIGURE 4.2. Fold bifurcation.

system has at α = 0 a nonhyperbolic fixed point x0 = 0 with µ = fx(0, 0) =
1. The behavior of the system near x = 0 for small |α| is shown in Figure
4.2. For α < 0 there are two fixed points in the system: x1,2(α) = ±√−α,
the left of which is stable, while the right one is unstable. For α > 0 there
are no fixed points in the system. While α crosses zero from negative to
positive values, the two fixed points (stable and unstable) “collide,” forming
at α = 0 a fixed point with µ = 1, and disappear. This is a fold (tangent)
bifurcation in the discrete-time dynamical system.

There is, as usual, another way of presenting this bifurcation: plotting
a bifurcation diagram in the direct product of the phase and parameter
spaces, namely, in the (x, α)-plane. The fixed-point manifold x−f(x, α) = 0
is simply the parabola α = −x2 (see Figure 4.3). Fixing some α, we can
easily determine the number of fixed points in the system for this parameter
value. At (x, α) = (0, 0) a map projecting the fixed-point manifold onto the
α-axis has a singularity of the fold type.

1

x 2

x

 =    (       )

α

 + x   = 2 0α x

f  x,x α

FIGURE 4.3. Fixed point manifold.
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Remark:
The system x �→ α + x − x2 can be considered in the same way. The

analysis reveals two fixed points appearing for α > 0. ♦

Now add higher-order terms to system (4.1), i.e., consider the system

x �→ α + x + x2 + x3ψ(x, α) ≡ Fα(x), (4.2)

where ψ = ψ(x, α) depends smoothly on (x, α). It is easy to check that in
a sufficiently small neighborhood of x = 0 the number and the stability
of the fixed points are the same for system (4.2) as for system (4.1) at
corresponding parameter values, provided |α| is small enough. Moreover, a
homeomorphism hα of a neighborhood of the origin mapping orbits of (4.1)
into the corresponding orbits of (4.2) can be constructed for each small
|α|. This property was called local topological equivalence of parameter-
dependent systems in Chapter 2. It should be noted that construction of
hα is not as simple as in the continuous-time case (cf. Lemma 3.1). In the
present case, a homeomorphism mapping the fixed points of (4.1) into the
corresponding fixed points of (4.2) will not necessarily map other orbits of
(4.1) into orbits of (4.2). Nevertheless, a homeomorphism hα satisfying the
condition

fα(x) = h−1
α (Fα(hα(x)))

for all (x, α) in a neighbourghood of (0, 0) (cf. Chapter 2) exists. Thus, the
following lemma holds.

Lemma 4.1 The system

x �→ α + x + x2 + O(x3)

is locally topologically equivalent near the origin to the system

x �→ α + x + x2. ✷

4.3 Generic fold bifurcation

We shall show that system (4.1) (with a possible sign change of the term
x2) is a topological normal form of a generic one-dimensional discrete-time
system having a fold bifurcation. In Chapter 5 we will also see that in some
strong sense it describes the fold bifurcation in a generic n-dimensional
system.

Theorem 4.1 Suppose that a one-dimensional system

x �→ f(x, α), x ∈ R, α ∈ R
1, (4.3)

with smooth f , has at α = 0 the fixed point x0 = 0, and let µ = fx(0, 0) = 1.
Assume that the following conditions are satisfied:
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(A.1) fxx(0, 0) = 0;
(A.2) fα(0, 0) = 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η �→ β + η ± η2 + O(η3).

Proof:
Expand f(x, α) in a Taylor series with respect to x at x = 0:

f(x, α) = f0(α) + f1(α)x + f2(α)x2 + O(x3).

Two conditions are satisfied: f0(0) = f(0, 0) = 0 (fixed-point condition)
and f1(0) = fx(0, 0) = 1 (fold bifurcation condition). Since f1(0) = 1, we
may write

f(x, α) = f0(α) + [1 + g(α)]x + f2(α)x2 + O(x3),

where g(α) is smooth and g(0) = 0.
As in the proof of Theorem 3.1 in Chapter 3, perform a coordinate shift

by introducing a new variable ξ:

ξ = x + δ, (4.4)

where δ = δ(α) is to be defined suitably. The transformation (4.4) yields

ξ̃ = x̃ + δ = f(x, α) + δ = f(ξ − δ, α) + δ.

Therefore,

ξ̃ = [f0(α)− g(α)δ + f2(α)δ2 + O(δ3)]
+ ξ + [g(α)− 2f2(α)δ + O(δ2)]ξ
+ [f2(α) + O(δ)]ξ2 + O(ξ3).

Assume that

(A.1) f2(0) = 1
2fxx(0, 0) = 0.

Then there is a smooth function δ(α), which annihilates the parameter-
dependent linear term in the above map for all sufficiently small |α|. Indeed,
the condition for that term to vanish can be written as

F (α, δ) ≡ g(α)− 2f2(α)δ + δ2ϕ(α, δ) = 0

for some smooth function ϕ. We have

F (0, 0) = 0,
∂F

∂δ

∣∣∣∣
(0,0)

= −2f2(0) = 0,
∂F

∂α

∣∣∣∣
(0,0)

= g′(0),
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which implies (local) existence and uniqueness of a smooth function δ =
δ(α) such that δ(0) = 0 and F (α, δ(α)) ≡ 0. It follows that

δ(α) =
g′(0)

2f2(0)
α + O(α2).

The map written in terms of ξ is given by

ξ̃ =
[
f ′0(0)α + α2ψ(α)

]
+ ξ + [f2(0) + O(α)] ξ2 + O(ξ3), (4.5)

where ψ is some smooth function.
Consider as a new parameter µ = µ(α) the constant (ξ-independent)

term of (4.5):
µ = f ′0(0)α + α2ψ(α).

We have

(a) µ(0) = 0;
(b) µ′(0) = f ′0(0) = fα(0, 0).

If we assume

(A.2) fα(0, 0) = 0,

then the Inverse Function Theorem implies local existence and uniqueness
of a smooth inverse function α = α(µ) with α(0) = 0. Therefore, equation
(4.5) now reads

ξ̃ = µ + ξ + a(µ)ξ2 + O(ξ3),

where a(µ) is a smooth function with a(0) = f2(0) = 0 due to the first
assumption (A.1).

Let η = |a(µ)|ξ and β = |a(µ)|µ. Then we get

η̃ = β + η + sη2 + O(η3),

where s = sign a(0) = ±1. ✷

Using Lemma 4.1, we can also eliminate O(η3) terms and finally arrive
at the following general result.

Theorem 4.2 (Topological normal form for the fold bifurcation)
Any generic scalar one-parameter system

x �→ f(x, α),

having at α = 0 the fixed point x0 = 0 with µ = fx(0, 0) = 1, is locally
topologically equivalent near the origin to one of the following normal forms:

η �→ β + η ± η2. ✷

Remark:
The genericity conditions in Theorem 4.2 are the nondegeneracy condi-

tion (A.1) and the transversality condition (A.2) from Theorem 4.1. ♦
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4.4 The normal form of the flip bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

x �→ −(1 + α)x + x3 ≡ f(x, α) ≡ fα(x). (4.6)

The map fα is invertible for small |α| in a neighborhood of the origin.
System (4.6) has the fixed point x0 = 0 for all α with multiplier µ =
−(1 + α). The point is linearly stable for small α < 0 and is linearly
unstable for α > 0. At α = 0 the point is not hyperbolic, since the multiplier
µ = fx(0, 0) = −1, but is nevertheless (nonlinearly) stable. There are no
other fixed points near the origin for small |α|.

Consider now the second iterate f2
α(x) of the map (4.6). If y = fα(x),

then

f2
α(x) = fα(y) = −(1 + α)y + y3

= −(1 + α)[−(1 + α)x + x3] + [−(1 + α)x + x3]3

= (1 + α)2x− [(1 + α)(2 + 2α + α2)]x3 + O(x5).

The map f2
α obviously has the trivial fixed point x0 = 0. It also has two

nontrivial fixed points for small α > 0:

x1,2 = f2
α(x1,2),

where x1,2 = ±(
√
α + O(α)) (see Figure 4.4). These two points are stable
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α x(   )f
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α < 0 α = 0 α > 0
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FIGURE 4.4. Second iterate map near a flip bifurcation.

and constitute a cycle of period two for the original map fα. This means
that

x2 = fα(x1), x1 = fα(x2),

with x1 = x2. Figure 4.5 shows the complete bifurcation diagram of system
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FIGURE 4.6. A flip corresponds to a pitchfork bifurcation of the second iterate.

(4.6) with the help of a staircase diagram. As α approaches zero from above,
the period-two cycle “shrinks” and disappears. This is a flip bifurcation.

The other way to present this bifurcation is to use the (x, α)-plane (see
Figure 4.6). In this figure, the horizontal axis corresponds to the fixed point
of (4.6) (stable for α < 0 and unstable for α > 0), while the “parabola”
represents the stable cycle of period two {x1, x2} existing for α > 0.

As usual, let us consider the effect of higher-order terms on system (4.6).

Lemma 4.2 The system

x �→ −(1 + α)x + x3 + O(x4)

is locally topologically equivalent near the origin to the system

x �→ −(1 + α)x + x3. ✷

The analysis of the fixed point and the period-two cycle is a simple
exercise. The rest of the proof is not easy and is omitted here.
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The case
x �→ −(1 + α)x− x3 (4.7)

can be treated in the same way. For α = 0, the fixed point x0 = 0 has
the same stability as in (4.6). At the critical parameter value α = 0 the
fixed point is unstable. The analysis of the second iterate of (4.7) reveals
an unstable cycle of period two for α < 0 which disappears at α = 0. The
higher-order terms do not affect the bifurcation diagram.

Remark:
By analogy with the Andronov-Hopf bifurcation, the flip bifurcation in

system (4.6) is called supercritical or “soft,” while the flip bifurcation in
system (4.7) is referred to as subcritical or “sharp.” The bifurcation type
is determined by the stability of the fixed point at the critical parameter
value. ♦

4.5 Generic flip bifurcation

Theorem 4.3 Suppose that a one-dimensional system

x �→ f(x, α), x ∈ R
1, α ∈ R

1,

with smooth f , has at α = 0 the fixed point x0 = 0, and let µ = fx(0, 0) =
−1. Assume that the following nondegeneracy conditions are satisfied:

(B.1) 1
2 (fxx(0, 0))2 + 1

3fxxx(0, 0) = 0;
(B.2) fxα(0, 0) = 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η �→ −(1 + β)η ± η3 + O(η4).

Proof:
By the Implicit Function Theorem, the system has a unique fixed point

x0(α) in some neighborhood of the origin for all sufficiently small |α|, since
fx(0, 0) = 1. We can perform a coordinate shift, placing this fixed point at
the origin. Therefore, we can assume without loss of generality that x = 0
is the fixed point of the system for |α| sufficiently small. Thus, the map f
can be written as follows:

f(x, α) = f1(α)x + f2(α)x2 + f3(α)x3 + O(x4), (4.8)

where f1(α) = −[1 + g(α)] for some smooth function g. Since g(0) = 0 and

g′(0) = fxα(0, 0) = 0,



4.5 Generic flip bifurcation 121

The case
x �→ −(1 + α)x− x3 (4.7)

can be treated in the same way. For α = 0, the fixed point x0 = 0 has
the same stability as in (4.6). At the critical parameter value α = 0 the
fixed point is unstable. The analysis of the second iterate of (4.7) reveals
an unstable cycle of period two for α < 0 which disappears at α = 0. The
higher-order terms do not affect the bifurcation diagram.

Remark:
By analogy with the Andronov-Hopf bifurcation, the flip bifurcation in

system (4.6) is called supercritical or “soft,” while the flip bifurcation in
system (4.7) is referred to as subcritical or “sharp.” The bifurcation type
is determined by the stability of the fixed point at the critical parameter
value. ♦

4.5 Generic flip bifurcation

Theorem 4.3 Suppose that a one-dimensional system

x �→ f(x, α), x ∈ R
1, α ∈ R

1,

with smooth f , has at α = 0 the fixed point x0 = 0, and let µ = fx(0, 0) =
−1. Assume that the following nondegeneracy conditions are satisfied:

(B.1) 1
2 (fxx(0, 0))2 + 1

3fxxx(0, 0) = 0;
(B.2) fxα(0, 0) = 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η �→ −(1 + β)η ± η3 + O(η4).

Proof:
By the Implicit Function Theorem, the system has a unique fixed point

x0(α) in some neighborhood of the origin for all sufficiently small |α|, since
fx(0, 0) = 1. We can perform a coordinate shift, placing this fixed point at
the origin. Therefore, we can assume without loss of generality that x = 0
is the fixed point of the system for |α| sufficiently small. Thus, the map f
can be written as follows:

f(x, α) = f1(α)x + f2(α)x2 + f3(α)x3 + O(x4), (4.8)

where f1(α) = −[1 + g(α)] for some smooth function g. Since g(0) = 0 and

g′(0) = fxα(0, 0) = 0,



122 4. One-Parameter Bifurcations of Fixed Points

according to assumption (B.2), the function g is locally invertible and can
be used to introduce a new parameter:

β = g(α).

Our map (4.8) now takes the form

x̃ = µ(β)x + a(β)x2 + b(β)x3 + O(x4),

where µ(β) = −(1 + β), and the functions a(β) and b(β) are smooth. We
have

a(0) = f2(0) =
1
2
fxx(0, 0), b(0) =

1
6
fxxx(0, 0).

Let us perform a smooth change of coordinate:

x = y + δy2, (4.9)

where δ = δ(β) is a smooth function to be defined. The transformation
(4.9) is invertible in some neighborhood of the origin, and its inverse can
be found by the method of unknown coefficients:

y = x− δx2 + 2δ2x3 + O(x4). (4.10)

Using (4.9) and (4.10), we get

ỹ = µy + (a + δµ− δµ2)y2 + (b + 2δa− 2δµ(δµ + a) + 2δ2µ3)y3 + O(y4).

Thus, the quadratic term can be “killed” for all sufficiently small |β| by
setting

δ(β) =
a(β)

µ2(β)− µ(β)
.

This can be done since µ2(0)− µ(0) = 2 = 0, giving

ỹ = µy +
(
b +

2a2

µ2 − µ

)
y3 + O(y4) = −(1 + β)y + c(β)y3 + O(y4)

for some smooth function c(β), such that

c(0) = a2(0) + b(0) =
1
4

(fxx(0, 0))2 +
1
6
fxxx(0, 0). (4.11)

Notice that c(0) = 0 by assumption (B.1).
Apply the rescaling

y =
η√|c(β)| .

In the new coordinate η the system takes the desired form:

η̃ = −(1 + β)η + sη3 + O(η4),

where s = sign c(0) = ±1. ✷

Using Lemma 4.2, we arrive at the following general result.
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Theorem 4.4 (Topological normal form for the flip bifurcation)
Any generic, scalar, one-parameter system

x �→ f(x, α),

having at α = 0 the fixed point x0 = 0 with µ = fx(0, 0) = −1, is locally
topologically equivalent near the origin to one of the following normal forms:

η �→ −(1 + β)η ± η3. ✷

Remark:
Of course, the genericity conditions in Theorem 4.4 are the nondegener-

acy condition (B.1) and the transversality condition (B.2) from Theorem
4.3. ♦

Example 4.1 (Ricker’s equation) Consider the following simple pop-
ulation model [Ricker 1954]:

xk+1 = αxke
−xk ,

where xk is the population density in year k, and α > 0 is the growth
rate. The function on the right-hand side takes into account the negative
role of interpopulation competition at high population densities. The above
recurrence relation corresponds to the discrete-time dynamical system

x �→ αxe−x ≡ f(x, α). (4.12)

System (4.12) has a trivial fixed point x0 = 0 for all values of the parameter
α. At α0 = 1, however, a nontrivial positive fixed point appears:

x1(α) = lnα.

The multiplier of this point is given by the expression

µ(α) = 1− lnα.

Thus, x1 is stable for 1 < α < α1 and unstable for α > α1, where α1 =
e2 = 7.38907 . . .. At the critical parameter value α = α1, the fixed point
has multiplier µ(α1) = −1. Therefore, a flip bifurcation takes place. To
apply Theorem 4.4, we need to verify the corresponding nondegeneracy
conditions in which all the derivatives must be computed at the fixed point
x1(α1) = 2 and at the critical parameter value α1.

One can check that

c(0) =
1
6
> 0, fxα = − 1

e2
= 0.

Therefore, a unique and stable period-two cycle bifurcates from x1 for α >
α1.
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FIGURE 4.7. Cascade of period-doubling (flip) bifurcations in Ricker’s equation.

The fate of this period-two cycle can be traced further. It can be ver-
ified numerically (see Exercise 4) that this cycle loses stability at α2 =
12.50925 . . . via the flip bifurcation, giving rise to a stable period-four cy-
cle. It bifurcates again at α4 = 14.24425 . . ., generating a stable period-eight
cycle that loses its stability at α8 = 14.65267 . . .. The next period doubling
takes place at α16 = 14.74212 . . . (see Figure 4.7, where several doublings
are presented).

It is natural to assume that there is an infinite sequence of bifurcation
values: αm(k), m(k) = 2k, k = 1, 2, . . . (m(k) is the period of the cycle
before the kth doubling). Moreover, one can check that at least the first
few elements of this sequence closely resemble a geometric progression. In
fact, the quotient

αm(k) − αm(k−1)

αm(k+1) − αm(k)

tends to µF = 4.6692 . . . as k increases. This phenomenon is called Feigen-
baum’s cascade of period doublings, and the constant µF is referred to as
the Feigenbaum constant. The most surprising fact is that this constant is
the same for many different systems exhibiting a cascade of flip bifurca-
tions. This universality has a deep reasoning, which will be discussed in
Appendix 1 to this chapter. ✸
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4.6 The “normal form” of the Neimark-Sacker
bifurcation

Consider the following two-dimensional discrete-time system depending on
one parameter:(

x1
x2

)
�→ (1 + α)

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
+ (x2

1 + x2
2)

(
cos θ − sin θ
sin θ cos θ

)(
a −b
b a

)(
x1
x2

)
,

(4.13)
where α is the parameter; θ = θ(α), a = a(α), and b = b(α) are smooth
functions; and 0 < θ(0) < π, a(0) = 0.

This system has the fixed point x1 = x2 = 0 for all α with Jacobian
matrix

A = (1 + α)
(

cos θ − sin θ
sin θ cos θ

)
.

The matrix has eigenvalues µ1,2 = (1+α)e±iθ, which makes the map (4.13)
invertible near the origin for all small |α|. As can be seen, the fixed point at
the origin is nonhyperbolic at α = 0 due to a complex-conjugate pair of the
eigenvalues on the unit circle. To analyze the corresponding bifurcation,
introduce the complex variable z = x1 + ix2, z̄ = x1 − ix2, |z|2 = zz̄ =
x2

1 + x2
2, and set d = a + ib. The equation for z reads

z �→ eiθz(1 + α + d|z|2) = µz + cz|z|2,

where µ = µ(α) = (1 + α)eiθ(α) and c = c(α) = eiθ(α)d(α) are complex
functions of the parameter α.

Using the representation z = ρeiϕ, we obtain for ρ = |z|

ρ �→ ρ|1 + α + d(α)ρ2|.

Since

|1 + α + d(α)ρ2| = (1 + α)
(

1 +
2a(α)
1 + α

ρ2 +
|d(α)|2

(1 + α)2
ρ4

)1/2

= 1 + α + a(α)ρ2 + O(ρ3),

we obtain the following polar form of system (4.13):{
ρ �→ ρ(1 + α + a(α)ρ2) + ρ4Rα(ρ),
ϕ �→ ϕ + θ(α) + ρ2Qα(ρ), (4.14)

for functions R and Q, which are smooth functions of (ρ, α). Bifurcations of
the systems’s phase portrait as α passes through zero can easily be analyzed
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using the latter form, since the mapping for ρ is independent of ϕ. The first
equation in (4.14) defines a one-dimensional dynamical system that has the
fixed point ρ = 0 for all values of α. The point is linearly stable if α < 0;
for α > 0 the point becomes linearly unstable. The stability of the fixed
point at α = 0 is determined by the sign of the coefficient a(0). Suppose
that a(0) < 0; then the origin is (nonlinearly) stable at α = 0. Moreover,
the ρ-map of (4.14) has an additional stable fixed point

ρ0(α) =
√
− α

a(α)
+ O(α)

for α > 0. The ϕ-map of (4.14) describes a rotation by an angle depending
on ρ and α; it is approximately equal to θ(α). Thus, by superposition of
the mappings defined by (4.14), we obtain the bifurcation diagram for the
original two-dimensional system (4.13) (see Figure 4.8).

x 2 x 2 x 2

x1

α = 0

x1 x1

α > 0α < 0

FIGURE 4.8. Supercritical Neimark-Sacker bifurcation.

The system always has a fixed point at the origin. This point is stable
for α < 0 and unstable for α > 0. The invariant curves of the system near
the origin look like the orbits near the stable focus of a continuous-time
system for α < 0 and like orbits near the unstable focus for α > 0. At the
critical parameter value α = 0 the point is nonlinearly stable. The fixed
point is surrounded for α > 0 by an isolated closed invariant curve that is
unique and stable. The curve is a circle of radius ρ0(α). All orbits starting
outside or inside the closed invariant curve, except at the origin, tend to
the curve under iterations of (4.14). This is a Neimark-Sacker bifurcation.

This bifurcation can also be presented in (x1, x2, α)-space. The appearing
family of closed invariant curves, parametrized by α, forms a paraboloid
surface.

The case a(0) > 0 can be analyzed in the same way. The system under-
goes the Neimark-Sacker bifurcation at α = 0. Contrary to the considered
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FIGURE 4.9. Subcritical Neimark-Sacker bifurcation.

case, there is an unstable closed invariant curve that disappears when α
crosses zero from negative to positive values (see Figure 4.9).

Remarks:
(1) As in the cases of the Andronov-Hopf and the flip bifurcations, these

two cases are often called supercritical and subcritical (or, better, “soft” and
“sharp”) Neimark-Sacker bifurcations. As usual, the type of the bifurcation
is determined by the stability of the fixed point at the bifurcation parameter
value.

(2) The structure of orbits of (4.14) on the invariant circle depends on
whether the ratio between the rotation angle ∆ϕ = θ(α)+ρ2Qα(ρ) and 2π
is rational or irrational on the circle. If it is rational, all the orbits on the
curve are periodic. More precisely, if

∆ϕ

2π
=
p

q

with integers p and q, all the points on the curve are cycles of period q of
the pth iterate of the map. If the ratio is irrational, there are no periodic
orbits and all the orbits are dense in the circle. ♦

Let us now add higher-order terms to system (4.13); for instance, consider
the system(

x1
x2

)
�→ (1 + α)

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
+ (x2

1 + x2
2)

(
cos θ − sin θ
sin θ cos θ

)(
a −b
b a

)(
x1
x2

)
+ O(‖x‖4).

(4.15)
Here, the O(‖x‖4) terms can depend smoothly on α. Unfortunately, it can-
not be said that system (4.15) is locally topologically equivalent to system
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(4.13). In this case, the higher-order terms do affect the bifurcation behav-
ior of the system. If one writes (4.15) in the polar form, the mapping for ρ
will depend on ϕ. The system can be represented in a form similar to (4.14)
but with 2π-periodic functions R and Q. Nevertheless, the phase portraits
of systems (4.13) and (4.15) have some important features in common.
Namely, the following lemma holds.

Lemma 4.3 O(‖x‖4) terms do not affect the bifurcation of the closed in-
variant curve in (4.15). That is, a locally unique invariant curve bifurcates
from the origin in the same direction and with the same stability as in
system (4.13). ✷

The proof of the lemma is rather involved and is given in Appendix 2.
The geometrical idea behind the proof is simple. We expect that map (4.15)
has an invariant curve near the invariant circle of the map (4.13). Fix α
and consider the circle

S0 =
{

(ρ, ϕ) : ρ =
√
− α

a(α)

}
,

which is located near the invariant circle of the “unperturbed” map without
O(‖x‖4) terms. It can be shown that iterations F kS0, k = 1, 2, . . ., where
F is the map defined by (4.15), converge to a closed invariant curve

S∞ = {(ρ, ϕ) : ρ = Ψ(ϕ)},
which is not a circle but is close to S0. Here, Ψ is a 2π-periodic function
of ϕ describing S∞ in polar coordinates. To establish the convergence, we
have to introduce a new “radial” variable u in a band around S0 (both the
band diameter and its width “shrink” as α → 0) and show that the map
F defines a contraction map F on a proper function space of 2π-periodic
functions u = u(ϕ). Then the Contraction Mapping Principle (see Chapter
1) gives the existence of a fixed point u(∞) of F : F(u(∞)) = u(∞). The
periodic function u(∞)(ϕ) represents the closed invariant curve S∞ we are
looking for at α fixed. Uniqueness and stability of S∞ in the band follow,
essentially, from the contraction. It can be verified that outside the band
there are no nontrivial invariant sets of (4.15).

Remarks:
(1) The orbit structure on the closed invariant curve and the variation

of this structure when the parameter changes are generically different in
systems (4.13) and (4.15). We will return to the analysis of bifurcations on
the invariant curve in Chapter 7. Here we just notice that, generically, there
is only a finite number of periodic orbits on the closed invariant curve. Let
a(0) < 0. Then, some iterate p of map (4.15) can have two q-periodic orbits:
a totally stable “node” cycle of period q and a saddle cycle of period q (see
Figure 4.10). The cycles exist in some “parameter window” and disappear
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FIGURE 4.10. Saddle {x1, x2, . . . , x6} and stable {y1, y2, . . . , y6} period-six orbits
on the invariant circle.

on its borders through the fold bifurcation. A generic system exhibits an
infinite number of such bifurcations corresponding to different windows.

(2) The bifurcating invariant closed curve in (4.15) has finite smoothness:
The function Ψ(ϕ) representing it in polar coordinates generically has only
a finite number of continuous derivatives with respect to ϕ, even if the
map (4.15) is differentiable infinitely many times. The number increases as
|α| → 0. The nonsmoothness appears when the saddle’s unstable (stable)
manifolds meet at the “node” points. ♦

4.7 Generic Neimark-Sacker bifurcation

We now shall prove that any generic two-dimensional system undergoing a
Neimark-Sacker bifurcation can be transformed into the form (4.15).

Consider a system

x �→ f(x, α), x = (x1, x2)T ∈ R
2, α ∈ R

1,

with a smooth function f , which has at α = 0 the fixed point x = 0 with
simple eigenvalues µ1,2 = e±iθ0 , 0 < θ0 < π. By the Implicit Function
Theorem, the system has a unique fixed point x0(α) in some neighborhood
of the origin for all sufficiently small |α|, since µ = 1 is not an eigenvalue of
the Jacobian matrix.1 We can perform a parameter-dependent coordinate
shift, placing this fixed point at the origin. Therefore, we may assume

1Since µ = 0 is not an eigenvalue, the system is invertible in some neighbor-
hood of the origin for sufficiently small |α|.
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without loss of generality that x = 0 is the fixed point of the system for |α|
sufficiently small. Thus, the system can be written as

x �→ A(α)x + F (x, α), (4.16)

where F is a smooth vector function whose components F1,2 have Taylor
expansions in x starting with at least quadratic terms, F (0, α) = 0 for all
sufficiently small |α|. The Jacobian matrix A(α) has two multipliers

µ1,2(α) = r(α)e±iϕ(α),

where r(0) = 1, ϕ(0) = θ0. Thus, r(α) = 1+β(α) for some smooth function
β(α), β(0) = 0. Suppose that β′(0) = 0. Then, we can use β as a new
parameter and express the multipliers in terms of β : µ1(β) = µ(β), µ2(β) =
µ̄(β), where

µ(β) = (1 + β)eiθ(β)

with a smooth function θ(β) such that θ(0) = θ0.

Lemma 4.4 By the introduction of a complex variable and a new param-
eter, system (4.16) can be transformed for all sufficiently small |α| into the
following form:

z �→ µ(β)z + g(z, z̄, β), (4.17)

where β ∈ R
1, z ∈ C

1, µ(β) = (1 + β)eiθ(β), and g is a complex-valued
smooth function of z, z̄, and β whose Taylor expansion with respect to (z, z̄)
contains quadratic and higher-order terms:

g(z, z̄, β) =
∑

k+l≥2

1
k!l!

gkl(β)zkz̄l,

with k, l = 0, 1, . . .. ✷

The proof of the lemma is completely analogous to that from the And-
ronov-Hopf bifurcation analysis in Chapter 3 and is left as an exercise for
the reader.

As in the Andronov-Hopf case, we start by making nonlinear (complex)
coordinate changes that will simplify the map (4.17). First, we remove all
the quadratic terms.

Lemma 4.5 The map

z �→ µz +
g20
2
z2 + g11zz̄ +

g02
2
z̄2 + O(|z|3), (4.18)

where µ = µ(β) = (1 + β)eiθ(β), gij = gij(β), can be transformed by an
invertible parameter-dependent change of complex coordinate

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,
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for all sufficiently small |β|, into a map without quadratic terms:

w �→ µw + O(|w|3),

provided that
eiθ0 = 1 and e3iθ0 = 1.

Proof:
The inverse change of variables is given by

w = z − h20

2
z2 − h11zz̄ − h02

2
z̄2 + O(|z|3).

Therefore, in the new coordinate w, the map (4.18) takes the form

w̃ = µw +
1
2

(g20 + (µ− µ2)h20)w2

+ (g11 + (µ− |µ|2)h11)ww̄

+
1
2

(g02 + (µ− µ̄2)h02)w̄2

+ O(|w|3).

Thus, by setting

h20 =
g20

µ2 − µ
, h11 =

g11
|µ|2 − µ

, h02 =
g02

µ̄2 − µ
,

we “kill” all the quadratic terms in (4.18). These substitutions are valid if
the denominators are nonzero for all sufficiently small |β| including β = 0.
Indeed, this is the case, since

µ2(0)− µ(0) = eiθ0(eiθ0 − 1) = 0,
|µ(0)|2 − µ(0) = 1− eiθ0 = 0,
µ̄(0)2 − µ(0) = eiθ0(e−3iθ0 − 1) = 0,

due to our restrictions on θ0. ✷

Remarks:
(1) Let µ0 = µ(0). Then, the conditions on θ0 used in the lemma can be

written as
µ0 = 1, µ3

0 = 1.

Notice that the first condition holds automatically due to our initial as-
sumptions on θ0.

(2) The resulting coordinate transformation is polynomial with coeffi-
cients that are smoothly dependent on β. In some neighborhood of the
origin the transformation is near-identical.

(3) Notice the transformation changes the coefficients of the cubic terms
of (4.18). ♦

Assuming that we have removed all quadratic terms, let us try to elimi-
nate the cubic terms as well.
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Lemma 4.6 The map

z �→ µz +
g30
6
z3 +

g21
2
z2z̄ +

g12
2
zz̄2 +

g03
6
z̄3 + O(|z|4), (4.19)

where µ = µ(β) = (1 + β)eiθ(β), gij = gij(β), can be transformed by an
invertible parameter-dependent change of coordinates

z = w +
h30

6
w3 +

h21

2
w2w̄ +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |β|, into a map with only one cubic term:

w �→ µw + c1w
2w̄ + O(|w|4),

provided that
e2iθ0 = 1 and e4iθ0 = 1.

Proof:
The inverse transformation is

w = z − h30

6
z3 − h21

2
z2z̄ − h12

2
zz̄2 − h03

6
z̄3 + O(|z|4).

Therefore,

w̃ = λw +
1
6

(g30 + (µ− µ3)h30)w3 +
1
2

(g21 + (µ− µ|µ|2)h21)w2w̄

+
1
2

(g12 + (µ− µ̄|µ|2)h12)ww̄2 +
1
6

(g03 + (µ− µ̄3)h03)w̄3 + O(|w|4).

Thus, by setting

h30 =
g30

µ3 − µ
, h12 =

g12
µ̄|µ|2 − µ

, h03 =
g03

µ̄3 − µ
,

we can annihilate all cubic terms in the resulting map except the w2w̄-term,
which must be treated separately. The substitutions are valid since all the
involved denominators are nonzero for all sufficiently small |β| due to the
assumptions concerning θ0.

One can also try to eliminate the w2w̄-term by formally setting

h21 =
g21

µ(1− |µ|2)
.

This is possible for small β = 0, but the denominator vanishes at β = 0
for all θ0. Thus, no extra conditions on θ0 would help. To obtain a trans-
formation that is smoothly dependent on β, set h21 = 0, that results in

c1 =
g21
2
. ✷
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Remarks:
(1) The conditions imposed on θ0 in the lemma mean

µ2
0 = 1, µ4

0 = 1,

and therefore, in particular, µ0 = −1 and µ0 = i. The first condition holds
automatically due to our initial assumptions on θ0.

(2) The remaining cubic w2w̄-term is called a resonant term. Note that
its coefficient is the same as the coefficient of the cubic term z2z̄ in the
original map (4.19). ♦

We now combine the two previous lemmas.

Lemma 4.7 (Normal form for the Neimark-Sacker bifurcation)
The map

z �→ µz +
g20
2
z2 + g11zz̄ +

g02
2
z̄2

+
g30
6
z3 +

g21
2
z2z̄ +

g12
2
zz̄2 +

g03
6
z̄3

+ O(|z|4),

where µ = µ(β) = (1 + β)eiθ(β), gij = gij(β), and θ0 = θ(0) is such that
eikθ0 = 1 for k = 1, 2, 3, 4, can be transformed by an invertible parameter-
dependent change of complex coordinate, which is smoothly dependent on
the parameter,

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2

+
h30

6
w3 +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |β|, into a map with only the resonant cubic term:

w �→ µw + c1w
2w̄ + O(|w|4),

where c1 = c1(β). ✷

The truncated superposition of the transformations defined in the two
previous lemmas gives the required coordinate change. First, annihilate
all the quadratic terms. This will also change the coefficients of the cubic
terms. The coefficient of w2w̄ will be 1

2 g̃21, say, instead of 1
2g21. Then,

eliminate all the cubic terms except the resonant one. The coefficient of
this term remains 1

2 g̃21. Thus, all we need to compute to get the coefficient
of c1 in terms of the given equation is a new coefficient 1

2 g̃21 of the w2w̄-
term after the quadratic transformation. The computations result in the
following expression for c1(α):

c1 =
g20g11(µ̄− 3 + 2µ)
2(µ2 − µ)(µ̄− 1)

+
|g11|2
1− µ̄

+
|g02|2

2(µ2 − µ̄)
+
g21
2
, (4.20)
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its coefficient is the same as the coefficient of the cubic term z2z̄ in the
original map (4.19). ♦

We now combine the two previous lemmas.

Lemma 4.7 (Normal form for the Neimark-Sacker bifurcation)
The map

z �→ µz +
g20
2
z2 + g11zz̄ +

g02
2
z̄2

+
g30
6
z3 +

g21
2
z2z̄ +

g12
2
zz̄2 +

g03
6
z̄3

+ O(|z|4),

where µ = µ(β) = (1 + β)eiθ(β), gij = gij(β), and θ0 = θ(0) is such that
eikθ0 = 1 for k = 1, 2, 3, 4, can be transformed by an invertible parameter-
dependent change of complex coordinate, which is smoothly dependent on
the parameter,

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2

+
h30

6
w3 +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |β|, into a map with only the resonant cubic term:

w �→ µw + c1w
2w̄ + O(|w|4),

where c1 = c1(β). ✷

The truncated superposition of the transformations defined in the two
previous lemmas gives the required coordinate change. First, annihilate
all the quadratic terms. This will also change the coefficients of the cubic
terms. The coefficient of w2w̄ will be 1

2 g̃21, say, instead of 1
2g21. Then,

eliminate all the cubic terms except the resonant one. The coefficient of
this term remains 1

2 g̃21. Thus, all we need to compute to get the coefficient
of c1 in terms of the given equation is a new coefficient 1

2 g̃21 of the w2w̄-
term after the quadratic transformation. The computations result in the
following expression for c1(α):

c1 =
g20g11(µ̄− 3 + 2µ)
2(µ2 − µ)(µ̄− 1)

+
|g11|2
1− µ̄

+
|g02|2

2(µ2 − µ̄)
+
g21
2
, (4.20)
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which gives, for the critical value of c1,

c1(0) =
g20(0)g11(0)(1− 2µ0)

2(µ2
0 − µ0)

+
|g11(0)|2
1− µ̄0

+
|g02(0)|2

2(µ2
0 − µ̄0)

+
g21(0)

2
, (4.21)

where µ0 = eiθ0 .

We now summarize the obtained results in the following theorem.

Theorem 4.5 Suppose a two-dimensional discrete-time system

x �→ f(x, α), x ∈ R
2, α ∈ R

1,

with smooth f , has, for all sufficiently small |α|, the fixed point x = 0 with
multipliers

µ1,2(α) = r(α)e±iϕ(α),

where r(0) = 1, ϕ(0) = θ0.
Let the following conditions be satisfied:

(C.1) r′(0) = 0;
(C.2) eikθ0 = 1 for k = 1, 2, 3, 4.

Then, there are smooth invertible coordinate and parameter changes trans-
forming the system into(

y1
y2

)
�→ (1 + β)

(
cos θ(β) − sin θ(β)
sin θ(β) cos θ(β)

)(
y1
y2

)
+

(y2
1 + y2

2)
(

cos θ(β) − sin θ(β)
sin θ(β) cos θ(β)

)(
a(β) −b(β)
b(β) a(β)

)(
y1
y2

)
+ O(‖y‖4)

(4.22)
with θ(0) = θ0 and a(0) = Re(e−iθ0c1(0)), where c1(0) is given by the
formula (4.21).

Proof:
The only thing left to verify is the formula for a(0). Indeed, by Lemmas

4.4, 4.5, and 4.6, the system can be transformed to the complex Poincaré
normal form,

w �→ µ(β)w + c1(β)w|w|2 + O(|w|4),

for µ(β) = (1 + β)eiθ(β). This map can be written as

w �→ eiθ(β)(1 + β + d(β)|w|2)w + O(|w|4),

where d(β) = a(β) + ib(β) for some real functions a(β), b(β). A return to
the real coordinates (y1, y2), w = y1 + iy2, gives system (4.22). Finally,

a(β) = Re d(β) = Re(e−iθ(β)c1(β)).
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Thus,
a(0) = Re(e−iθ0c1(0)). ✷

Using Lemma 4.3, we can state the following general result.

Theorem 4.6 (Generic Neimark-Sacker bifurcation) For any gene-
ric two-dimensional one-parameter system

x �→ f(x, α),

having at α = 0 the fixed point x0 = 0 with complex multipliers µ1,2 = e±iθ0 ,
there is a neighborhood of x0 in which a unique closed invariant curve
bifurcates from x0 as α passes through zero. ✷

Remark:
The genericity conditions assumed in the theorem are the transversality

condition (C.1) and the nondegeneracy condition (C.2) from Theorem 4.5
and the additional nondegeneracy condition

(C.3) a(0) = 0.

It should be stressed that the conditions eikθ0 = 1 for k = 1, 2, 3, 4 are not
merely technical. If they are not satisfied, the closed invariant curve may
not appear at all, or there might be several invariant curves bifurcating
from the fixed point (see Chapter 9). ♦

The coefficient a(0), which determines the direction of the appearance
of the invariant curve in a generic system exhibiting the Neimark-Sacker
bifurcation, can be computed via

a(0) = Re
(
e−iθ0g21

2

)
−Re

(
(1− 2eiθ0)e−2iθ0

2(1− eiθ0)
g20g11

)
− 1

2
|g11|2− 1

4
|g02|2.
(4.23)

In Chapter 5 we will see how to deal with n-dimensional discrete-time
systems where n > 2 and how to apply the results to limit cycle bifurcations
in continuous-time systems.

Example 4.2 (Neimark-Sacker bifurcation in the delayed logistic
equation) Consider the following recurrence equation:

uk+1 = ruk(1− uk−1).

This is a simple population dynamics model, where uk stands for the density
of a population at time k, and r is the growth rate. It is assumed that the
growth is determined not only by the current population density but also
by its density in the past.
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FIGURE 4.11. Stable invariant curve in the delayed logistic equation.

If we introduce vk = uk−1, the equation can be rewritten as

uk+1 = ruk(1− vk),
vk+1 = vk,

which, in turn, defines the two-dimensional discrete-time dynamical system,(
x1
x2

)
�→

(
rx1(1− x2)

x1

)
≡

(
F1(x, r)
F2(x, r)

)
, (4.24)

where x = (x1, x2)T . The map (4.24) has the fixed point (0, 0)T for all
values of r. For r > 1, a nontrivial positive fixed point x0 appears, with
the coordinates

x0
1(r) = x0

2(r) = 1− 1
r
.

The Jacobian matrix of the map (4.24) evaluated at the nontrivial fixed
point is given by

A(r) =
(

1 1− r
1 0

)
and has eigenvalues

µ1,2(r) =
1
2
±

√
5
4
− r.

If r > 5
4 , the eigenvalues are complex and |µ1,2|2 = µ1µ2 = r−1. Therefore,

at r = r0 = 2 the nontrivial fixed point loses stability and we have a
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Neimark-Sacker bifurcation: The critical multipliers are

µ1,2 = e±iθ0 , θ0 =
π

3
= 600.

It is clear that conditions (C.1) and (C.2) are satisfied.
To verify the nondegeneracy condition (C.3), we have to compute a(0).

The critical Jacobian matrix A0 = A(r0) have the eigenvectors

A0q = eiθ0q, AT
0 p = e−iθ0p,

where

q ∼
(

1
2

+ i

√
3

2
, 1

)T

, p ∼
(
−1

2
+ i

√
3

2
, 1

)T

.

To achieve the normalization 〈p, q〉 = 1, we can take, for example,

q =

(
1
2

+ i

√
3

2
, 1

)T

, p =

(
i

√
3

3
,

1
2
− i

√
3

6

)T

.

Now we compose
x = x0 + zq + z̄q̄

and evaluate the function

H(z, z̄) = 〈p, F (x0 + zq + z̄q̄, r0)− x0〉.

Computing its Taylor expansion at (z, z̄) = (0, 0),

H(z, z̄) = eiθ0z +
∑

2≤j+k≤3

1
j!k!

gjkz
j z̄k + O(|z|4),

gives

g20 = −2 + i
2
√

3
3

, g11 = i
2
√

3
3

, g02 = 2 + i
2
√

3
3

, g21 = 0,

that allows us to find the critical real part

a(0) = Re
(
e−iθ0g21

2

)
− Re

(
(1− 2eiθ0)e−2iθ0

2(1− eiθ0)
g20g11

)
− 1

2
|g11|2 − 1

4
|g02|2

= −2 < 0.

Therefore, a unique and stable closed invariant curve bifurcates from the
nontrivial fixed point for r > 2 (see Figure 4.11). ✸
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4.8 Exercises

(1) Prove that in a small neighborhood of x = 0 the number and stability of
fixed points and periodic orbits of the maps (4.1) and (4.8) are independent
of higher-order terms, provided |α| is sufficiently small. (Hint: To prove the
absence of long-period cycles, use asymptotic stability arguments.)

(2) Show that the normal form coefficient c(0) for the flip bifurcation (4.11)
can be computed in terms of the second iterate of the map:

c(0) = − 1
12

∂3

∂x3 f2
α(x)

∣∣∣∣
(x,α)=(0,0)

,

where fα(x) = f(x, α). (Hint: Take into account that fx(0, 0) = −1.)

(3) (Logistic map) Consider the following map (May [1976]):

fα(x) = αx(1− x),

depending on a single parameter α.
(a) Show that at α1 = 3 the map exhibits the flip bifurcation, namely, a

stable fixed point of fα becomes unstable, while a stable period-two cycle
bifurcates from this point for α > 3. (Hint: Use the formula from Exercise
2 above.)

(b) Prove that at α0 = 1 +
√

8 the logistic map has a fold bifurcation
generating a stable and an unstable cycle of period three as α increases.

(4) (Second period doubling in Ricker’s model) Verify that the sec-
ond period doubling takes place in Ricker’s map (4.12) at α2 = 12.50925 . . ..
(Hint: Introduce y = αxe−x and write a system of three equations for the
three unknowns (x, y, α) defining a period-two cycle {x, y} with multiplier
µ = −1. Use one of the standard routines implementing Newton’s method
(see Chapter 10) to solve the system numerically starting from some suit-
able initial data.)

(5) (Henon map) Consider the following invertible planar map(
x
y

)
�→

(
y

−εx + µ− y2

)
depending on two parameters. Find a curve in the (ε, µ)-plane correspond-
ing to the flip bifurcation of a fixed point.

(6) Derive formula (4.21) for c1(0) for the Neimark-Sacker bifurcation.
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(7) (Discrete-time predator-prey model)
Consider the following discrete-time system (Maynard Smith [1968]):

xk+1 = αxk(1− xk)− xkyk,

yk+1 =
1
β
xkyk,

which is a discrete-time version of a standard predator-prey model. Here xk
and yk are the prey and predator numbers, respectively, in year (generation)
k, and it is assumed that in the absence of prey the predators become
extinct in one generation.

(a) Prove that a nontrivial fixed point of the map undergoes a Neimark-
Sacker bifurcation on a curve in the (α, β)-plane, and compute the direction
of the closed invariant-curve bifurcation.

(b) Guess what happens to the emergent closed invariant curve for pa-
rameter values far from the bifurcation curve.

4.9 Appendix 1: Feigenbaum’s universality

As mentioned previously, many one-dimensional, parameter-dependent dy-
namical systems

x �→ fα(x), x ∈ R
1, (A1.1)

exhibit infinite cascades of period doublings. Moreover, the corresponding
flip bifurcation parameter values, α1, α2, . . . , αi, . . . , form (asymptotically)
a geometric progression:

αi − αi−1

αi+1 − αi
→ µF ,

as i → ∞, where µF = 4.6692 . . . is a system-independent (universal)
constant. The sequence {αi} has a limit α∞. At α∞ the dynamics of the
system become “chaotic,” since its orbits become irregular, nonperiodic
sequences.

The phenomenon was first explained for special noninvertible dynami-
cal systems (A1.1), that belong for all parameter values to some class Y.
Namely, a system

x �→ f(x) (A1.2)

from this class satisfies the following conditions:

(1) f(x) is an even smooth function, f : [−1, 1] → [−1, 1];
(2) f ′(0) = 0, x = 0 is the only maximum, f(0) = 1;
(3) f(1) = −a < 0;
(4) b = f(a) > a;
(5) f(b) = f2(a) < a;
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FIGURE 4.12. A map satisfying conditions (1) through (5) and its second iterate.

where a and b are positive (see Figure 4.12). The function fα(x) = 1−αx2

is in this class for α > 1.
Consider the second iterate f2

α of a map satisfying conditions (1) through
(5). In the square A′B′C ′D′ (see Figure 4.12), the graph of f2

α, after a
coordinate dilatation and a sign change, looks similar to the graph of fα
in the unit square ABCD. For example, if fα(x) = 1− αx2, then f2

α(x) =
(1− α) + 2α2x2 + · · ·. This observation leads to the introduction of a map
defined on functions in Y,

(Tf)(x) = −1
a
f(f(−ax)), (A1.3)

where a = −f(1). Notice that a depends on f .

Definition 4.4 The map T is called the doubling operator.

It can be checked that map (A1.3) transforms a function f ∈ Y into some
function Tf ∈ Y. Therefore, we can consider a discrete-time dynamical sys-
tem {Z+,Y, T k}. This is a dynamical system with the infinite-dimensional
state space Y, which is a function space. Moreover, the doubling operator is
not invertible in general. Thus, we have to consider only positive iterations
of T .

We shall state the following theorems without proof. They have been
proved with the help of a computer and delicate error estimates.

Theorem 4.7 (Fixed-point existence) The map T : Y → Y defined by
(A1.3) has a fixed point ϕ ∈ Y : Tϕ = ϕ. ✷

It has been found that

ϕ(x) = 1− 1.52763 . . . x2 + 0.104815 . . . x4 + 0.0267057 . . . x6 + . . . .
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In Exercise 1 of Chapter 10 we discuss how to obtain some approximations
to ϕ(x).

Theorem 4.8 (Saddle properties of the fixed point) The linear part
L of the doubling operator T at its fixed point ϕ has only one eigenvalue
µF = 4.6692 . . . with |µF | > 1. The rest of the spectrum of L is located
strictly inside the unit circle. ✷

The terms “linear part” and “spectrum” of L are generalizations to the
infinite-dimensional case of the notions of the Jacobian matrix and its eigen-
values. An interested reader can find exact definitions in standard textbooks
on functional analysis.

Theorems 4.7 and 4.8 mean that the system {Z+,Y, T k} has a saddle
fixed point. This fixed point ϕ (a function that is transformed by the dou-
bling operator into itself) has a codim 1 stable invariant manifold W s(ϕ)
and a one-dimensional unstable invariant manifold Wu(ϕ). The stable man-
ifold is composed by functions f ∈ Y, which become increasingly similar to
ϕ under iteration of T . The unstable manifold is composed of functions for
which all their preimages under the action of T remain close to ϕ. This is a
curve in the function space Y (Figure 4.13 sketches the manifold structure).

uW
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(ϕ)

(ϕ)

ϕ

s

FIGURE 4.13. Stable and unstable manifolds of the fixed point ϕ.

Notice that maps Tf and f2 are topologically equivalent (the relevant
homeomorphism is a simple scaling; see (A1.3)). Hence, if Tf has a periodic
orbit of period N , f2 has a periodic orbit of the same period and f therefore
has a periodic orbit of period 2N . This simple observation plays the central
role in the following. Consider all maps from Y having a fixed point with
multiplier µ = −1. Such maps form a codim 1 manifold Σ ⊂ Y. The
following result has also been established with the help of a computer.

Theorem 4.9 (Manifold intersection) The manifold Σ intersects the
unstable manifold Wu(ϕ) transversally. ✷
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FIGURE 4.14. Preimages of a surface Σ intersecting the unstable manifold
Wu(ϕ).

By analogy with a finite-dimensional saddle, it is clear that the preimages
T−kΣ will accumulate on W s(ϕ) as k →∞ (see Figure 4.14). Taking into
account the previous observation, we can conclude that T−1Σ is composed
of maps having a cycle of period two with a multiplier −1, that T−2Σ
is formed by maps having a cycle of period four with a multiplier −1,
and so forth. Any generic one-parameter dynamical system fα from the
considered class corresponds to a curve Λ in Y. If this curve is sufficiently
close to Wu(ϕ), it will intersect all the preimages T−kΣ. The points of
intersection define a sequence of bifurcation parameter values α1, α2, . . .
corresponding to a cascade of period doublings. Asymptotic properties of
this sequence are clearly determined by the unstable eigenvalue µF . Indeed,
let ξ be a coordinate along Wu(ϕ), and let ξk denote the coordinate of the
intersection of Wu(ϕ) with T−kΣ. The doubling operator restricted to the
unstable manifold has the form

ξ �→ µF ξ + O(ξ2)

and is invertible, with the inverse given by

ξ �→ 1
µF

ξ + O(ξ2).

Since
ξk+1 =

1
µF

ξk + O(ξ2k),

we have
ξk − ξk−1

ξk+1 − ξk
→ µF

as k →∞, as does the sequence of the bifurcation parameter values on the
curve Λ.
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4.10 Appendix 2: Proof of Lemma 4.3

In this appendix we prove the following lemma, which is the complex analog
of Lemma 4.3.

Lemma 4.8 The map

z̃ = eiθ(α)z(1 + α + d(α)|z|2) + g(z, z̄, α), (A2.1)

where d(α) = a(α) + ib(α); a(α), b(α), and θ(α) are smooth real-valued
functions; a(0) < 0, 0 < θ(0) < π, g = O(|z|4) is a smooth complex-valued
function of z, z̄, α, has a stable closed invariant curve for sufficiently small
α > 0.

Proof:
Step 1 (Rescaling and shifting). First, introduce new variables (s, ϕ) by the
formula

z =
√
− α

a(α)
eiϕ(1 + s). (A2.2)

Substitution of (A2.2) into (A2.1) gives

eiϕ̃(1 + s̃) = ei(ϕ+θ(α))(1 + s)
[
1− α(2s + s2) + iαν(α)(1 + s)2

]
+ α3/2h(s, ϕ, α),

where

ν(α) = − b(α)
a(α)

,

and h is a smooth complex-valued function of (s, ϕ, α1/2). Thus, the map
(A2.1) in (s, ϕ)-coordinates reads{

s̃ = (1− 2α)s− α(3s2 + s3) + α3/2p(s, ϕ, α),
ϕ̃ = ϕ + θ(α) + αν(α)(1 + s)2 + α3/2q(s, ϕ, α),

(A2.3)

where p, q are smooth real-valued functions of (s, ϕ, α1/2). Now apply the
scaling

s =
√
αξ. (A2.4)

After rescaling accounting to (A2.4), the map (A2.3) takes the form{
ξ̃ = (1− 2α)ξ − α3/2(3ξ2 + α1/2ξ3) + αp(1)(ξ, ϕ, α),
ϕ̃ = ϕ + [θ(α) + αν(α)] + α3/2ν(α)(2ξ + α1/2ξ2) + α3/2q(1)(ξ, ϕ, α),

(A2.5)
where

p(1)(ξ, ϕ, α) = p(α1/2ξ, ϕ, α), q(1)(ξ, ϕ, α) = q(α1/2ξ, ϕ, α),
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are smooth with respect to (ξ, ϕ, α1/2). Denote ω(α) = θ(α) + αν(α), and
notice that p(1) can be written as

p(1)(ξ, ϕ, α) = r(0)(ϕ, α) + α1/2r(1)(ξ, ϕ, α).

Now (A2.5) can be represented by{
ξ̃ = (1− 2α)ξ + αr(0)(ϕ, α) + α3/2r(2)(ξ, ϕ, α),
ϕ̃ = ϕ + ω(α) + α3/2q(2)(ξ, ϕ, α),

(A2.6)

with

r(2)(ξ, ϕ, α) = −(3ξ2 + α1/2ξ3) + r(1)(ξ, ϕ, α),
q(2)(ξ, ϕ, α) = ν(α)(2ξ + α1/2ξ2) + q(1)(ξ, ϕ, α).

The functions r(2) and q(2) have the same smoothness as p(1) and q(1).
Finally, perform a coordinate shift, eliminating the term αr(0)(ϕ, α) from
the first equation in (A2.6):

ξ = u + 1
2r

(0)(ϕ, α). (A2.7)

This gives a map F , which we will work with from now on,

F :
{

ũ = (1− 2α)u + α3/2Hα(u, ϕ),
ϕ̃ = ϕ + ω(α) + α3/2Kα(u, ϕ),

(A2.8)

where ω(α) is smooth and

Hα(u, ϕ) = r(2)
(
u + 1

2r
(0)(ϕ, α), ϕ, α

)
,

Kα(u, ϕ) = q(2)
(
u + 1

2r
(0)(ϕ, α), ϕ, α

)
,

are smooth functions of (u, ϕ, α1/2) that are 2π-periodic in ϕ.
Notice that the band {(u, ϕ) : |u| ≤ 1, ϕ ∈ [0, 2π]} corresponds to a band

of O(α) width around the circle

S0(α) =
{
z : |z|2 = − α

a(α)

}
in (A2.1), which has an O(α1/2) radius in the original coordinate z. In what
follows, it is conveinient to introduce a number

λ = sup
|u|≤1,ϕ∈[0,2π]

{
|Hα|, |Kα|,

∣∣∣∣∂Hα

∂u

∣∣∣∣ , ∣∣∣∣∂Kα

∂u

∣∣∣∣ , ∣∣∣∣∂Hα

∂ϕ

∣∣∣∣ , ∣∣∣∣∂Kα

∂ϕ

∣∣∣∣} . (A2.9)

So defined, λ depends on α but remains bounded as α→ 0.

Step 2 (Definition of the function space). We will characterize the closed
curves by elements of a function space U . By definition, u ∈ U is a 2π-
periodic function u = u(ϕ) satisfying the following two conditions:



144 4. One-Parameter Bifurcations of Fixed Points

are smooth with respect to (ξ, ϕ, α1/2). Denote ω(α) = θ(α) + αν(α), and
notice that p(1) can be written as

p(1)(ξ, ϕ, α) = r(0)(ϕ, α) + α1/2r(1)(ξ, ϕ, α).

Now (A2.5) can be represented by{
ξ̃ = (1− 2α)ξ + αr(0)(ϕ, α) + α3/2r(2)(ξ, ϕ, α),
ϕ̃ = ϕ + ω(α) + α3/2q(2)(ξ, ϕ, α),

(A2.6)

with

r(2)(ξ, ϕ, α) = −(3ξ2 + α1/2ξ3) + r(1)(ξ, ϕ, α),
q(2)(ξ, ϕ, α) = ν(α)(2ξ + α1/2ξ2) + q(1)(ξ, ϕ, α).

The functions r(2) and q(2) have the same smoothness as p(1) and q(1).
Finally, perform a coordinate shift, eliminating the term αr(0)(ϕ, α) from
the first equation in (A2.6):

ξ = u + 1
2r

(0)(ϕ, α). (A2.7)

This gives a map F , which we will work with from now on,

F :
{
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(U.1) |u(ϕ)| ≤ 1 for all ϕ;
(U.2) |u(ϕ1)− u(ϕ2)| ≤ |ϕ1 − ϕ2| for all ϕ1, ϕ2.

The first property means that u(ϕ) is absolutely bounded by unity, while
the second means that u(ϕ) is Lipschitz continuous with Lipschitz constant
equal to one. Space U is a complete metric space with respect to the norm

‖u‖ = sup
ϕ∈[0,2π]

|u(ϕ)|.

Recall from Chapter 1 that a map F : U → U (transforming a function
u(ϕ) ∈ U into some other function ũ(ϕ) = (Fu)(ϕ) ∈ U) is a contraction
if there is a number ε, 0 < ε < 1, such that

‖F(u1)−F(u2)‖ ≤ ε‖u1 − u2‖

for all u1,2 ∈ U . A contraction map in a complete normed space has a
unique fixed point u(∞) ∈ U :

F(u(∞)) = u(∞).

Moreover, the fixed point u(∞) is a globally stable equilibrium of the
infinite-dimensional dynamical system {U,F}, that is,

lim
k→+∞

‖Fk(u)− u(∞)‖ = 0,

for all u ∈ U (see Figure 4.15). The above two facts are often referred to
as the Contraction Mapping Principle.

2(ϕ)

u 0(ϕ)

u

(    )

ϕ

u 1(ϕ)

u (ϕ)8

FIGURE 4.15. Accumulating closed curves.

Step 3 (Construction of the map F). We will consider a map F induced by
F on U . This means that if u represents a closed curve, then ũ = F(u)
represents its image under the map F defined by (A2.8).
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Suppose that a function u = u(ϕ) from U is given. To construct the map
F , we have to specify a procedure for each given ϕ that allows us to find
the corresponding ũ(ϕ) = (Fu)(ϕ). Notice, however, that F is nearly a
rotation by the angle ω(α) in ϕ. Thus, a point (ũ(ϕ), ϕ) in the resulting
curve is the image of a point (u(ϕ̂), ϕ̂) in the original curve with a different
angle coordinate ϕ̂ (see Figure 4.16).

u~

(  (ϕ),ϕ)u

(  (ϕ),ϕ)u

(  (ϕ),ϕ)

^ ^

FIGURE 4.16. Definition of the map.

To show that ϕ̂ is uniquely defined, we have to prove that the equation

ϕ = ϕ̂ + ω(α) + α3/2Kα(u(ϕ̂), ϕ̂) (A2.10)

has a unique solution ϕ̂ = ϕ̂(ϕ) for any given u ∈ U . This is the case, since
the right-hand side of (A2.10) is a strictly increasing function of ϕ̂. Indeed,
let ϕ2 > ϕ1; then, according to (A2.8),

ϕ̃2 − ϕ̃1 = ϕ2 − ϕ1 + α3/2 [Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)]
≥ ϕ2 − ϕ1 − α3/2 |Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)| .

Taking into account that Kα is a smooth function with (A2.9) and (U.2),
we get

|Kα(u(ϕ2), ϕ2)−Kα(u(ϕ1), ϕ1)| ≤ λ[|u(ϕ2)− u(ϕ1)|+ |ϕ2 − ϕ1|]
≤ 2λ|ϕ2 − ϕ1| = 2λ(ϕ2 − ϕ1).

This last estimate can also be written as

− |Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)| ≥ −2λ(ϕ2 − ϕ1),

which implies
ϕ̃2 − ϕ̃1 ≥ (1− 2λα3/2)(ϕ2 − ϕ1).

Thus, the right-hand side of (A2.10) is a strictly increasing function, pro-
vided α is small enough, and its solution ϕ̂ is uniquely defined.2 From the

2Meanwhile, ϕ̂ ≈ ϕ− ω(α).
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FIGURE 4.16. Definition of the map.

To show that ϕ̂ is uniquely defined, we have to prove that the equation

ϕ = ϕ̂ + ω(α) + α3/2Kα(u(ϕ̂), ϕ̂) (A2.10)

has a unique solution ϕ̂ = ϕ̂(ϕ) for any given u ∈ U . This is the case, since
the right-hand side of (A2.10) is a strictly increasing function of ϕ̂. Indeed,
let ϕ2 > ϕ1; then, according to (A2.8),

ϕ̃2 − ϕ̃1 = ϕ2 − ϕ1 + α3/2 [Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)]
≥ ϕ2 − ϕ1 − α3/2 |Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)| .

Taking into account that Kα is a smooth function with (A2.9) and (U.2),
we get

|Kα(u(ϕ2), ϕ2)−Kα(u(ϕ1), ϕ1)| ≤ λ[|u(ϕ2)− u(ϕ1)|+ |ϕ2 − ϕ1|]
≤ 2λ|ϕ2 − ϕ1| = 2λ(ϕ2 − ϕ1).

This last estimate can also be written as

− |Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)| ≥ −2λ(ϕ2 − ϕ1),

which implies
ϕ̃2 − ϕ̃1 ≥ (1− 2λα3/2)(ϕ2 − ϕ1).

Thus, the right-hand side of (A2.10) is a strictly increasing function, pro-
vided α is small enough, and its solution ϕ̂ is uniquely defined.2 From the

2Meanwhile, ϕ̂ ≈ ϕ− ω(α).
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above estimates, it also follows that ϕ̂(ϕ) – that is, the inverse function to
the function given by (A2.10) – is Lipschitz continuous:

|ϕ̂(ϕ1)− ϕ̂(ϕ2)| ≤ (1− 2λα3/2)−1|ϕ1 − ϕ2|. (A2.11)

Now we can define the map ũ = F(u) by the formula

ũ(ϕ) = (1− 2α)u(ϕ̂) + α3/2Kα(u(ϕ̂), ϕ̂), (A2.12)

where ϕ̂ is the solution of (A2.10). The mere definition, of course, is not
enough and we have to verify that F(u) ∈ U , if u ∈ U , namely, to check
(U.1) and (U.2) for ũ = F(u).

Condition (U.1) for ũ follows from the estimate

|ũ(ϕ)| ≤ (1− 2α)|u(ϕ̂)|+ α3/2|Hα(u(ϕ̂), ϕ̂)| ≤ 1− 2α + λα3/2,

where we have used (U.1) for u and the definition (A2.9) of λ. Thus, |ũ| ≤ 1
if α is small enough and positive. Condition (U.2) for ũ is obtained by the
sequence of estimates:

|ũ(ϕ1)− ũ(ϕ2)| ≤ (1− 2α)|u(ϕ̂1)− u(ϕ̂2)|
+ α3/2|Hα(u(ϕ̂1), ϕ̂1)−Hα(u(ϕ̂2), ϕ̂2)|

≤ (1− 2α)|u(ϕ̂1)− u(ϕ̂2)|
+ α3/2λ[|ũ(ϕ1)− ũ(ϕ2)|+ |ϕ̂1 − ϕ̂2|]

≤ (1− 2α + 2λα3/2)|ϕ̂1 − ϕ̂2|,

where the final inequality holds due to the Lipschitz continuity of u. In-
serting the estimate (A2.11), we get

|ũ(ϕ1)− ũ(ϕ2)| ≤ (1− 2α + 2λα3/2)(1− 2λα3/2)−1|ϕ1 − ϕ2|.

Thus, (U.2) also holds for ũ for all sufficiently small positive α. Therefore,
the map ũ = F(u) is well defined.

Step 4 (Verification of the contraction property). Now suppose two functions
u1, u2 ∈ U are given. What we need to obtain is the estimation of ‖ũ1− ũ2‖
in terms of ‖u1 − u2‖. By the definition (A2.12) of ũ = F(u),

‖ũ1(ϕ)− ũ2(ϕ))‖ ≤ (1− 2α)|u1(ϕ̂1)− u2(ϕ̂2)|
+ α3/2|Hα(u1(ϕ̂1), ϕ̂1)−Hα(u2(ϕ̂2), ϕ̂2)|

≤ (1− 2α)|u1(ϕ̂1)− u2(ϕ̂2)|
+ α3/2λ[|u1(ϕ̂1)− u2(ϕ̂2)|+ |ϕ̂1 − ϕ̂2|],

(A2.13)
where ϕ̂1 and ϕ̂2 are the unique solutions of

ϕ = ϕ̂1 + ω(α) + α3/2Kα(u1(ϕ̂1), ϕ̂1) (A2.14)
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‖ũ1(ϕ)− ũ2(ϕ))‖ ≤ (1− 2α)|u1(ϕ̂1)− u2(ϕ̂2)|
+ α3/2|Hα(u1(ϕ̂1), ϕ̂1)−Hα(u2(ϕ̂2), ϕ̂2)|

≤ (1− 2α)|u1(ϕ̂1)− u2(ϕ̂2)|
+ α3/2λ[|u1(ϕ̂1)− u2(ϕ̂2)|+ |ϕ̂1 − ϕ̂2|],

(A2.13)
where ϕ̂1 and ϕ̂2 are the unique solutions of

ϕ = ϕ̂1 + ω(α) + α3/2Kα(u1(ϕ̂1), ϕ̂1) (A2.14)



148 4. One-Parameter Bifurcations of Fixed Points

and
ϕ = ϕ̂2 + ω(α) + α3/2Kα(u2(ϕ̂2), ϕ̂2), (A2.15)

respectively. The estimates (A2.13) have not solved the problem yet, since
we have to use only ‖u1−u2‖ in the right-hand side. First, express |u1(ϕ̂1)−
u2(ϕ̂2)| in terms of ‖u1 − u2‖ and |ϕ̂1 − ϕ̂2|:

|u1(ϕ̂1)− u2(ϕ̂2)| = |u1(ϕ̂1)− u2(ϕ̂1) + u2(ϕ̂1)− u2(ϕ̂2)|
≤ |u1(ϕ̂1)− u2(ϕ̂1)|+ |u2(ϕ̂1)− u2(ϕ̂2)|
≤ ‖u1 − u2‖+ |ϕ̂1 − ϕ̂2|.

(A2.16)

The last inequality has been obtained using the definition of the norm
and the Lipschitz continuity of u2. To complete the estimates, we need to
express |ϕ̂1− ϕ̂2| in terms of ‖u1− u2‖. Subtracting (A2.15) from (A2.14),
transposing, and taking absolute values yield

|ϕ̂1 − ϕ̂2| ≤ α3/2|Kα(u1(ϕ̂1), ϕ̂1)−Kα(u2(ϕ̂2), ϕ̂2)|
≤ α3/2λ[|u1(ϕ̂1)− u2(ϕ̂2)|+ |ϕ̂1 − ϕ̂2|].

Inserting (A2.16) into this inequality and collecting all the terms involving
|ϕ̂1 − ϕ̂2| on the left, result in

|ϕ̂1 − ϕ̂2| ≤ (1− 2α3/2λ)−1α3/2λ‖u1 − u2‖. (A2.17)

Using the estimates (A2.16) and (A2.17), we can complete (A2.13) as fol-
lows:

‖ũ1(ϕ)− ũ2(ϕ))‖ ≤ ε‖u1 − u2‖,
where

ε = (1−2α)
[
1 + α3/2λ(1− 2α3/2λ)−1

]
+α3/2λ

[
1 + 2α3/2λ(1− 2α3/2λ)−1

]
.

Since
ε = 1− 2α + O(α3/2),

the map F is a contraction in U for small positive α. Therfore, it has a
unique stable fixed point u(∞) ∈ U .

Step 5 (Stability of the invariant curve). Now take a point (u0, ϕ0) within
the band {(u, ϕ) : |u| ≤ 1, ϕ ∈ [0, 2π]}. If the point belongs to the curve
given by u(∞), it remains on this curve under iterations of F , since the
map F maps this curve into itself. If the point does not lie on the invariant
curve, take some (noninvariant) closed curve passing through it represented
by u(0) ∈ U , say. Such a curve always exists. Let us apply the iterations of
the map F defined by (A2.8) to this point. We get a sequence of points

{(uk, ϕk)}∞k=0 .
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It is clear that each point from this sequence belongs to the correspond-
ing iterate of the curve u(0) under the map F . We have just shown that
the iterations of the curve converge to the invariant curve given by u(∞).
Therefore, the point sequence must also converge to the curve. This proves
the stability of the closed invariant curve as the invariant set of the map
and completes the proof. ✷

4.11 Appendix 3: Bibliographical notes

The dynamics generated by one-dimensional maps is a classical mathemat-
ical subject, studied in detail (see Whitley [1983] and van Strien [1991] for
surveys). Properties of the fixed points and period-two cycles involved in
the fold and flip bifurcations were known long ago. Explicit formulation
of the topological normal form theorems for these bifurcations is due to
Arnold [1983]. A complete proof, that the truncation of the higher-order
terms in the normal forms results in locally topologically equivalent sys-
tems, happens to be unexpectedly difficult (see Newhouse, Palis & Takens
[1983], Arnol’d et al. [1994]) and remains unpublished.

The appearance of a closed invariant curve surrounding a fixed point
while a pair of complex multipliers crosses the unit circle was known to
Andronov and studied by Neimark [1959] (without explicit statement of all
the genericity conditions). A complete proof was given by Sacker [1965],
who discovered the bifurcation independently. It became widely known as
“Hopf bifurcation for maps” after Ruelle & Takens [1971] and Marsden &
McCracken [1976]. A modern treatment of the Neimark-Sacker bifurcation
for planar maps can be found in Iooss [1979], where the normal form co-
efficient a(0) is computed (see also Wan [1978b]). In our Appendix 2 we
follow, essentially, the proof given in Marsden & McCracken [1976].

The normal form theory for maps is presented by Arnold [1983]. In our
analysis of the codimension-one bifurcations of fixed points we need only a
small portion of this theory which we develop “on-line.”

Cascades of period doubling bifurcations were observed by mathemati-
cal ecologists in one-dimensional discrete-time population models (Shapiro
[1974] analyzed a model by Ricker [1954], while May [1974] used the logistic
map). Feigenbaum [1978] discovered the universality in such cascades and
explained its mechanism based on the properties of the doubling operator.
The relevant theorems were proved by Lanford [1980] with the help of a
computer and delicate error estimates (see also Collet & Eckmann [1980],
Babenko & Petrovich [1983]). Feigenbaum-type universality is also proved
for some classes of multidimensional discrete-time dynamical systems.

Both the delayed logistic and discrete-time predator-prey models origi-
nate in a book by Maynard Smith [1968]. The fate of the closed invariant
curve while a parameter “moves” away from the Neimark-Sacker bifurca-
tion was analyzed for the delayed logistic map by Aronson, Chory, Hall &
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5
Bifurcations of Equilibria and
Periodic Orbits in n-Dimensional
Dynamical Systems

In the previous two chapters we studied bifurcations of equilibria and fixed
points in generic one-parameter dynamical systems having the minimum
possible phase dimensions. Indeed, the systems we analyzed were either
one- or two-dimensional. This chapter shows that the corresponding bi-
furcations occur in “essentially” the same way for generic n-dimensional
systems. As we shall see, there are certain parameter-dependent one- or
two-dimensional invariant manifolds on which the system exhibits the cor-
responding bifurcations, while the behavior off the manifolds is somehow
“trivial,” for example, the manifolds may be exponentially attractive. More-
over, such manifolds (called center manifolds) exist for many dissipative
infinite-dimensional dynamical systems. Below we derive explicit formulas
for the approximation of center manifolds in finite dimensions and for sys-
tems restricted to them at bifurcation parameter values. In Appendix 1 we
consider a reaction-diffusion system on an interval to illustrate the neces-
sary modifications of the technique to handle infinite-dimensional systems.

5.1 Center manifold theorems

We are going to formulate without proof the main theorems that allow us
to reduce the dimension of a given system near a local bifurcation. Let us
start with the critical case; we assume in this section that the parameters
of the system are fixed at their bifurcation values, which are those values
for which there is a nonhyperbolic equilibrium (fixed point). We will treat
continuous- and discrete-time cases separately.
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5.1.1 Center manifolds in continuous-time systems
Consider a continuous-time dynamical system defined by

ẋ = f(x), x ∈ R
n, (5.1)

where f is sufficiently smooth, f(0) = 0. Let the eigenvalues of the Jacobian
matrix A evaluated at the equilibrium point x0 = 0 be λ1, λ2, . . . , λn. Sup-
pose the equilibrium is not hyperbolic and that there are thus eigenvalues
with zero real part. Assume that there are n+ eigenvalues (counting multi-
plicities) with Re λ > 0, n0 eigenvalues with Re λ = 0, and n− eigenvalues
with Re λ < 0 (see Figure 5.1). Let T c denote the linear (generalized)

- n +

0n

n

Im

Re λ

λ

FIGURE 5.1. Critical eigenvalues of an equilibrium.

eigenspace of A corresponding to the union of the n0 eigenvalues on the
imaginary axis. The eigenvalues with Re λ = 0 are often called critical, as
is the eigenspace T c. Let ϕt denote the flow associated with (5.1). Under
the assumptions stated above, the following theorem holds.

Theorem 5.1 (Center Manifold Theorem) There is a locally defined
smooth n0-dimensional invariant manifold W c

loc(0) of (5.1) that is tangent
to T c at x = 0.
Moreover, there is a neighborhood U of x0 = 0, such that if ϕtx ∈ U for

all t ≥ 0(t ≤ 0), then ϕtx→W c
loc(0) for t→ +∞ (t→ −∞). ✷

Definition 5.1 The manifold W c
loc is called the center manifold.

We are not going to present the proof here. If n+ = 0, the mani-
fold W c

loc can be constructed as a local limit of iterations of T c under
ϕ1. From now on, we drop the subscript “loc” in order to simplify no-
tation. Figures 5.2 and 5.3 illustrate the theorem for the fold bifurcation
on the plane (n = 2, n0 = 1, n− = 1) and for the Hopf bifurcation in
R

3 (n = 3, n0 = 2, n− = 1). In the first case, the center manifold W c is
tangent to the eigenvector corresponding to λ1 = 0, while in the second
case, it is tangent to a plane spanned by the real and imaginary parts of
the complex eigenvector corresponding to λ1 = iω0, ω0 > 0.
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FIGURE 5.2. One-dimensional center manifold at the fold bifurcation.
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FIGURE 5.3. Two-dimensional center manifold at the Hopf bifurcation.

Remarks:
(1) The second statement of the theorem means that orbits staying near

the equilibrium for t ≥ 0 or t ≤ 0 tend to W c in the corresponding time
direction. If we know a priori that all orbits starting in U remain in this
region forever (a necessary condition for this is n+ = 0), then the theorem
implies that these orbits approach W c(0) as t → +∞. In this case the
manifold is “attracting.”

(2) W c need not be unique. The system{
ẋ = x2,
ẏ = −y,

has an equilibrium (x, y) = (0, 0) with λ1 = 0, λ2 = −1 (a fold case). It
possesses a family of one-dimensional center manifolds:

W c
β(0) = {(x, y) : y = ψβ(x)},
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Remarks:
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where

ψβ(x) =
{

β exp
( 1
x

)
for x < 0,

0 for x ≥ 0,

(see Figure 5.4(a)). The system
ẋ = −y − x(x2 + y2),
ẏ = x− y(x2 + y2),
ż = −z,

has an equilibrium (x, y, z) = (0, 0, 0) with λ1,2 = ±i, λ3 = −1 (Hopf case).
There is a family of two-dimensional center manifolds in the system given

c
β

W
c

β

W

(b)

x ρ

y z

0 0

(a)

FIGURE 5.4. Nonuniqueness of the center manifold at (a) fold and (b) Hopf
bifurcations.

by

W c
β(0) = {(x, y, z) : z = φβ(x, y)},

where

φβ(x, y) =

{
β exp

(
− 1

2(x2+y2)

)
for x2 + y2 > 0,

0 for x = y = 0,

(see Figure 5.4(b)). As we shall see, this nonuniqueness is actually irrelevant
for applications.

(3) A center manifold W c has the same finite smoothness as f (if f ∈ Ck

with finite k, W c is also a Ck manifold) in some neighborhood U of x0.
However, as k →∞ the neighborhood U may shrink, thus resulting in the
nonexistence of a C∞ manifold W c for some C∞ systems (see Exercise 1).
♦
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In its eigenbasis,1 system (5.1) can be written as{
u̇ = Bu + g(u, v),
v̇ = Cv + h(u, v), (5.2)

where u ∈ R
n0 , v ∈ R

n++n− , B is an n0 × n0 matrix with all its n0 eigen-
values on the imaginary axis, while C is an (n+ + n−)× (n+ + n−) matrix
with no eigenvalue on the imaginary axis. Functions g and h have Taylor
expansions starting with at least quadratic terms. The center manifold W c

of system (5.2) can be locally represented as a graph of a smooth function:

W c = {(u, v) : v = V (u)}

(see Figure 5.5). Here V : R
n0 → R

n++n− , and due to the tangent property
of W c, V (u) = O(‖u‖2).

u1

u(  )V

T

c

c

{                 }

0

= {      0}v =

=

2u

v =W

v

FIGURE 5.5. Center manifold as the graph of a function v = V (u).

Theorem 5.2 (Reduction Principle) System (5.2) is locally topologi-
cally equivalent near the origin to the system{

u̇ = Bu + g(u, V (u)),
v̇ = Cv. ✷

(5.3)

Notice that the equations for u and v are uncoupled in (5.3). The first
equation is the restriction of (5.2) to its center manifold. Thus, the dy-
namics of the structurally unstable system (5.2) are essentially determined

1Recall that the eigenbasis is a basis formed by all (generalized) eigenvectors
of A (or their linear combinations if the corresponding eigenvalues are complex).
Actually, the basis used in the following may not be the true eigenbasis: Any
basis in the noncritical eigenspace is allowed. In other words, the matrix C may
not be in real canonical (Jordan) form.
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by this restriction, since the second equation in (5.3) is linear and has
exponentially decaying/growing solutions. For example, if u = 0 is the
asymptotically stable equilibrium of the restriction and all eigenvalues of
C have negative real part, then (u, v) = (0, 0) is the asymptotically stable
equilibrium of (5.2). Clearly, the dynamics on the center manifold are de-
termined not only by the linear but also by the nonlinear terms of (5.2). If
there is more than one center manifold, then all the resulting systems (5.3)
with different V are locally topologically equivalent.

The second equation in (5.3) can be replaced by the equations of a stan-
dard saddle: {

v̇ = −v,
ẇ = w,

(5.4)

with (v, w) ∈ R
n− × R

n+ . Therefore, the Reduction Principle can be ex-
pressed neatly in the following way: Near a nonhyperbolic equilibrium the
system is locally topologically equivalent to the suspension of its restriction
to the center manifold by the standard saddle.

5.1.2 Center manifolds in discrete-time systems
Consider now a discrete-time dynamical system defined by

x �→ f(x), x ∈ R
n, (5.5)

where f is sufficiently smooth, f(0) = 0. Let the eigenvalues of the Jaco-
bian matrix A evaluated at the fixed point x0 = 0 be µ1, µ2, . . . , µn. Recall,
that we call them multipliers. Suppose that the equilibrium is not hyper-
bolic and there are therefore multipliers on the unit circle (with absolute
value one). Assume that there are n+ multipliers outside the unit circle, n0
multipliers on the unit circle, and n− multipliers inside the unit circle (see
Figure 5.6). Let T c denote the linear invariant (generalized) eigenspace of

+

n0

Im µ

n

Re µn -

FIGURE 5.6. Critical multipliers of a fixed point.
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A corresponding to the union of n0 multipliers on the unit circle. Then,
Theorem 5.1 holds verbatim for system (5.5), if we consider only integer
time values and set ϕk = fk, the kth iterate of f . Using an eigenbasis, we
can rewrite the system as(

u
v

)
�→

(
Bu + g(u, v)
Cv + h(u, v)

)
(5.6)

with the same notation as before, but the matrix B now has eigenvalues
on the unit circle, while all the eigenvalues of C are inside and/or outside
it. The center manifold possesses the local representation v = V (u), and
the Reduction Principle remains valid.

Theorem 5.3 System (5.6) is locally topologically equivalent near the ori-
gin to the system (

u
v

)
�→

(
Bu + g(u, V (u))
Cv

)
. ✷ (5.7)

The construction of the standard saddle is more involved for the discrete-
time case, since we have to take into account the orientation properties
of the map in the expanding and contracting directions. First, suppose for
simplicity that there are no multipliers outside the unit circle, (i.e., n+ = 0).
Then, if detC > 0, the map v �→ Cv in (5.7) can be replaced by

v �→ 1
2v,

which is a standard orientation-preserving stable node. However, if detC <
0, the map v �→ Cv in (5.7) must be substituted by{

v1 �→ 1
2v1,

v2 �→ − 1
2v2,

where v1 ∈ R
n−−1, v2 ∈ R

1, which is a standard orientation-reversing stable
node. If there are now n+ multipliers outside the unit circle, the standard
unstable node w �→ w̃, w, w̃ ∈ R

n+ , should be added to (5.7). The standard
unstable node is defined similarly to the standard stable node but with
multiplier 2 instead of 1

2 . Standard stable and unstable nodes together
define the standard saddle map on R

n−+n+ .

5.2 Center manifolds in parameter-dependent
systems

Consider now a smooth continuous-time system that depends smoothly on
a parameter:

ẋ = f(x, α), x ∈ R
n, α ∈ R

1. (5.8)
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Suppose that at α = 0 the system has a nonhyperbolic equilibrium x = 0
with n0 eigenvalues on the imaginary axis and (n − n0) eigenvalues with
nonzero real parts. Let n− of them have negative real parts, while n+ have
positive real parts. Consider the extended system:{

α̇ = 0,
ẋ = f(x, α). (5.9)

Notice that the extended system (5.9) may be nonlinear, even if the original
system (5.8) is linear. The Jacobian of (5.9) at the equilibrium (α, x) =
(0, 0) is the (n + 1)× (n + 1) matrix

J =
(

0 0
fα(0, 0) fx(0, 0)

)
,

having (n0 + 1) eigenvalues on the imaginary axis and (n−n0) eigenvalues
with nonzero real part. Thus, we can apply the Center Manifold Theorem
to system (5.9). The theorem guarantees the existence of a center manifold
Wc ⊂ R

1 ×R
n,dimWc = n0 + 1. This manifold is tangent at the origin to

the (generalized) eigenspace of J corresponding to (n0+1) eigenvalues with
zero real part. Since α̇ = 0, the hyperplanes Πα0 = {(α, x) : α = α0} are
also invariant with respect to (5.9). Therefore, the manifold Wc is foliated
by n0-dimensional invariant manifolds

W c
α = Wc ∩Πα

(see Figure 5.7). Thus, we have the following lemma.

0

W

α

α

cc
WW

v

0 u

FIGURE 5.7. Center manifold of the extended system.

Lemma 5.1 System (5.8) has a parameter-dependent local invariant man-
ifold W c

α. If n+ = 0, this manifold is attracting. ✷

Notice that W c
0 is a center manifold of (5.9) at α = 0 as defined in the

previous section. Often, the manifold W c
α is called a center manifold for all
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ẋ = f(x, α). (5.9)

Notice that the extended system (5.9) may be nonlinear, even if the original
system (5.8) is linear. The Jacobian of (5.9) at the equilibrium (α, x) =
(0, 0) is the (n + 1)× (n + 1) matrix

J =
(

0 0
fα(0, 0) fx(0, 0)

)
,

having (n0 + 1) eigenvalues on the imaginary axis and (n−n0) eigenvalues
with nonzero real part. Thus, we can apply the Center Manifold Theorem
to system (5.9). The theorem guarantees the existence of a center manifold
Wc ⊂ R

1 ×R
n,dimWc = n0 + 1. This manifold is tangent at the origin to

the (generalized) eigenspace of J corresponding to (n0+1) eigenvalues with
zero real part. Since α̇ = 0, the hyperplanes Πα0 = {(α, x) : α = α0} are
also invariant with respect to (5.9). Therefore, the manifold Wc is foliated
by n0-dimensional invariant manifolds

W c
α = Wc ∩Πα

(see Figure 5.7). Thus, we have the following lemma.

0

W

α

α

cc
WW

v

0 u

FIGURE 5.7. Center manifold of the extended system.

Lemma 5.1 System (5.8) has a parameter-dependent local invariant man-
ifold W c

α. If n+ = 0, this manifold is attracting. ✷

Notice that W c
0 is a center manifold of (5.9) at α = 0 as defined in the

previous section. Often, the manifold W c
α is called a center manifold for all



5.2 Center manifolds in parameter-dependent systems 159

α. For each small |α| we can restrict system (5.8) to W c
α. If we introduce

a (parameter-dependent) coordinate system on W c
α with u ∈ R

n0 as the
coordinate,2 this restriction will be represented by a smooth system:

u̇ = Φ(u, α). (5.10)

At α = 0, system (5.10) is equivalent to the restriction of (5.8) to its center
manifold W c

0 and will be explicitly computed up to the third-order terms
in Section 5.4 for all codim 1 bifurcations.

Theorem 5.4 (Shoshitaishvili [1975]) System (5.8) is locally topologi-
cally equivalent to the suspension of (5.10) by the standard saddle (5.4).
Moreover, (5.10) can be replaced by any locally topologically equivalent sys-
tem. ✷

This theorem means that all “essential” events near the bifurcation pa-
rameter value occur on the invariant manifold W c

α and are captured by
the n0-dimensional system (5.10). A similar theorem can be formulated
for discrete-time dynamical systems and for systems with more than one
parameter. Let us apply this theorem to the fold and Hopf bifurcations.

Example 5.1 (Generic fold bifurcation in R
2) Consider a planar

system
ẋ = f(x, α), x ∈ R

2, α ∈ R
1. (5.11)

Assume that at α = 0 it has the equilibrium x0 = 0 with one eigenvalue
λ1 = 0 and one eigenvalue λ2 < 0. Lemma 5.1 gives the existence of a
smooth, locally defined, one-dimensional attracting invariant manifold W c

α

for (5.11) for small |α|. At α = 0 the restricted equation (5.10) has the
form

u̇ = au2 + O(u3).

If a = 0 and the restricted equation depends generically on the parameter,
then, as proved in Chapter 3, it is locally topologically equivalent to the
normal form

u̇ = α + σu2,

where σ = sign a = ±1. Under these genericity conditions, Theorem 5.4
implies that (5.11) is locally topologically equivalent to the system{

u̇ = α + σu2,
v̇ = −v. (5.12)

Equations (5.12) are decoupled. The resulting phase portraits are presented
in Figure 5.8 for the case σ > 0. For α < 0, there are two hyperbolic

2Since W c
0 is tangent to T c, we can parametrize W c

α for small |α| by coordinates
on T c using a (local) projection from W c

α onto T c.
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α > 0α < 0 α = 0

FIGURE 5.8. Fold bifurcation in the standard system (5.12) for σ = 1.

equilibria: a stable node and a saddle. They collide at α = 0, forming a
nonhyperbolic saddle-node point, and disappear. There are no equilibria
for α > 0. The manifolds W c

α in (5.12) can be considered as parameter-
independent and as given by v = 0. Obviously, it is one of the infinite
number of choices (see the Remark following Example 5.2). The same events
happen in (5.11) on some one-dimensional, parameter-dependent, invariant
manifold, that is locally attracting (see Figure 5.9). All the equilibria belong

α > 0α < 0 α = 0

FIGURE 5.9. Fold bifurcation in a generic planar system.

to this manifold. Figures 5.8 and 5.9 explain why the fold bifurcation is
often called the saddle-node bifurcation. It should be clear how to generalize
these considerations to cover the case λ2 > 0, as well as the n-dimensional
case. ✸

Example 5.2 (Generic Hopf bifurcation in R
3) Consider a system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1. (5.13)

Assume that at α = 0 it has the equilibrium x0 = 0 with eigenvalues
λ1,2 = ±iω0, ω0 > 0 and one negative eigenvalue λ3 < 0. Lemma 5.1 gives
the existence of a parameter-dependent, smooth, local two-dimensional at-
tracting invariant manifold W c

α of (5.15) for small |α|. At α = 0 the re-
stricted equation (5.10) can be written in complex form as

ż = iω0z + g(z, z̄), z ∈ C
1.
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α > 0α = 0α < 0

FIGURE 5.10. Hopf bifurcation in the standard system (5.14) for σ = −1.

If the Lyapunov coefficient l1(0) of this equation is nonzero and the re-
stricted equation depends generically on the parameter, then, as proved in
Chapter 3, it is locally topologically equivalent to the normal form

ż = (α + i)z + σz2z̄,

where σ = sign l1(0) = ±1. Under these genericity conditions, Theorem
5.4 implies that (5.13) is locally topologically equivalent to the system{

ż = (α + i)z + σz2z̄,
v̇ = −v. (5.14)

The phase portrait of (5.14) is shown in Figure 5.8 for σ = −1. The su-
percritical Hopf bifurcation takes place in the invariant plane v = 0, which
is attracting. The same events happen for (5.13) on some two-dimensional
attracting manifold (see Figure 5.11). The construction allows a general-
ization to arbitrary dimension n ≥ 3. ✸

α > 0α = 0α < 0

FIGURE 5.11. Supercritical Hopf bifurcation in a generic three-dimensional sys-
tem.

Remark:
It should be noted that the manifold W c

α is not unique in either the
fold or Hopf cases, but the bifurcating equilibria or cycle belong to any of
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the center manifolds (cf. Remark (2) after the Center Manifold Theorem
in Section 5.1.1). In the fold bifurcation case, the manifold is unique near
the saddle and coincides with its unstable manifold as far as it exists. The
uniqueness is lost at the stable node. Similarly, in the Hopf bifurcation
case, the manifold is unique and coincides with the unstable manifold of
the saddle-focus until the stable limit cycle Lα, where the uniqueness breaks
down. Figure 5.12 shows the possible freedom in selecting W c

α in the Hopf
case for α > 0 in (ρ, v)-coordinates in system (5.14) with σ = −1. ♦

v

ρ

W c
α

FIGURE 5.12. Nonuniqueness of the parameter-dependent center manifold near
the Hopf bifurcation.

5.3 Bifurcations of limit cycles

A combination of the Poincaré map (see Chapter 1) and the center mani-
fold approaches allows us to apply the results of Chapter 4 to limit cycle
bifurcations in n-dimensional continuous-time systems.

Let L0 be a limit cycle (isolated periodic orbit) of system (5.8) at α = 0.
Let Pα denote the associated Poincaré map for nearby α;Pα : Σ → Σ, where
Σ is a local cross-section to L0. If some coordinates ξ = (ξ1, ξ2, . . . , ξn−1)
are introduced on Σ, then ξ̃ = Pα(ξ) can be defined to be the point of
the next intersection with Σ of the orbit of (5.8) having initial point with
coordinates ξ on Σ. The intersection of Σ and L0 gives a fixed point ξ0 for
P0: P0(ξ0) = ξ0. The map Pα is smooth and locally invertible.

Suppose that the cycle L0 is nonhyperbolic, having n0 multipliers on the
unit circle. The center manifold theorems then give a parameter-dependent
invariant manifold W c

α ⊂ Σ of Pα on which the “essential” events take place.
The Poincaré map Pα is locally topologically equivalent to the suspension
of its restriction to this manifold by the standard saddle map. Fix n = 3,
for simplicity, and consider the implications of this theorem for the limit
cycle bifurcations.
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α = 0

L 0

α < 0 α > 0

FIGURE 5.13. Fold bifurcation of limit cycles.

Fold bifurcation of cycles

Assume that at α = 0 the cycle has a simple multiplier µ1 = 1 and its
other multiplier satisfies 0 < µ2 < 1. The restriction of Pα to the invariant
manifold W c

α is a one-dimensional map, having a fixed point with µ1 = 1 at
α = 0. As has been shown in Chapter 4, this generically implies the collision
and disappearance of two fixed points of Pα as α passes through zero.
Under our assumption on µ2, this happens on a one-dimensional attracting
invariant manifold of Pα; thus, a stable and a saddle fixed point are involved
in the bifurcation (see Figure 5.13). Each fixed point of the Poincaré map
corresponds to a limit cycle of the continuous-time system. Therefore, two
limit cycles (stable and saddle) collide and disappear in system (5.8) at
this bifurcation (see the figure).

Flip bifurcation of cycles

Suppose that at α = 0 the cycle has a simple multiplier µ1 = −1, while
−1 < µ2 < 0. Then, the restriction of Pα to the invariant manifold will
demonstrate generically the period-doubling (flip) bifurcation: A cycle of
period two appears for the map, while the fixed point changes its stability
(see Figure 5.14). Since the manifold is attracting, the stable fixed point,
for example, loses stability and becomes a saddle point, while a stable cycle
of period two appears. The fixed points correspond to limit cycles of the
relevant stability. The cycle of period-two points for the map corresponds
to a unique stable limit cycle in (5.8) with approximately twice the period of
the “basic” cycle L0. The double-period cycle makes two big “excursions”
near L0 before the closure. The exact bifurcation scenario is determined
by the normal form coefficient of the restricted Poincaré map evaluated at
α = 0.
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FIGURE 5.14. Flip bifurcation of limit cycles.

Neimark-Sacker bifurcation of cycles

The last codim 1 bifurcation corresponds to the case when the multipli-
ers are complex and simple and lie on the unit circle: µ1,2 = e±iθ0 . The
Poincaré map then has a parameter-dependent, two-dimensional, invari-
ant manifold on which a closed invariant curve generically bifurcates from
the fixed point (see Figure 5.15). This closed curve corresponds to a two-
dimensional invariant torus T

2 in (5.8). The bifurcation is determined by
the normal form coefficient of the restricted Poincaré map at the critical
parameter value. The orbit structure on the torus T

2 is determined by the
restriction of the Poincaré map to this closed invariant curve. Thus, generi-
cally, there are long-period cycles of different stability types located on the
torus (see Chapter 7).

L 0

0L0L

α < 0α > 0 α = 0

FIGURE 5.15. Neimark-Sacker bifurcation of a limit cycle.
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restriction of the Poincaré map to this closed invariant curve. Thus, generi-
cally, there are long-period cycles of different stability types located on the
torus (see Chapter 7).

L 0

0L0L

α < 0α > 0 α = 0

FIGURE 5.15. Neimark-Sacker bifurcation of a limit cycle.



5.4 Computation of center manifolds 165

5.4 Computation of center manifolds

As pointed out in the previous sections, the analysis of bifurcations of equi-
libria and fixed points (and, therefore, limit cycles) in multidimensional sys-
tems reduces to that for the equations (maps) restricted to the invariant
manifold W c

α. Since these bifurcations are determined by the normal form
coefficients of the restricted systems at the critical parameter value α = 0,
we have to be able to compute the center manifold W c = W c

0 and the equa-
tions or maps restricted to this manifold up to sufficiently high-order terms.
Coefficients of the Taylor expansion of the function v = V (u) representing
the center manifold W c can be computed via a recursive procedure, each
step of which involves solving a linear system of algebraic equations. The
coefficients so obtained are the same for all nonunique center manifolds of
the system. In the C∞ case this means that these manifolds can only differ
by “flat” functions. Ahead, we derive explicit formulas for the quadratic
Taylor coefficients of the center manifolds for all codim 1 bifurcations of
equilibria and fixed points. As should now be clear, for these cases W c

is either one- or two-dimensional, n0 = 1, 2. Note that in order to analyze
these bifurcations it is sufficient, in the generic case, to obtain the restricted
equations up to (and including) third-order terms only.

5.4.1 Quadratic approximation to center manifolds in
eigenbasis

In this section we assume that the system at the bifurcation parameter
value is transformed into its eigenbasis and has the form (5.2) or (5.6). In
the next section we will show how to avoid this transformation while leaving
the obtained formulas virtually unchanged. Thus, in practice, this latter
method should be used in the analysis of systems arising in applications,
since they are almost never written in the eigenform (5.2) or (5.6).

Let us start with the continuous-time systems.

Fold bifurcation (λ1 = 0)

In this case, n0 = 1 and system (5.2) can be written as

{
u̇ = 1

2σu
2 + u〈b, v〉+ 1

6δu
3 + · · · ,

v̇ = Cv + 1
2au

2 + · · · , (5.15)

where u ∈ R
1, v ∈ R

n−1, σ, δ ∈ R
1, a, b ∈ R

n−1, and C is an (n−1)×(n−1)
matrix without eigenvalues on the imaginary axis. Here 〈b, v〉 =

∑n−1
i=1 bivi

is the standard scalar product in R
n−1, and the dots mean all undisplayed
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terms.3 Using the functions h and g from (5.2), we obtain

σ =
∂2

∂u2 g(u, 0)
∣∣∣∣
u=0

, (5.16)

δ =
∂3

∂u3 g(u, 0)
∣∣∣∣
u=0

, (5.17)

a =
∂2

∂u2h(u, 0)
∣∣∣∣
u=0

, (5.18)

and the components (b1, b2, . . . , bn−1) of the vector b are given by

bi =
∂2

∂vi∂u
g(u, v)

∣∣∣∣
u=0,v=0

, (5.19)

where i = 1, 2, . . . , n− 1.
We seek the second-order term in the Taylor expansion for v = V (u)

representing the center manifold:

v = V (u) = 1
2w2u

2 + O(u3), (5.20)

where w2 ∈ R
n−1 is an unknown vector. Substituting expansion (5.20) into

the second equation of (5.15), and using the first equation, we get

w2u(σu2 + 〈b, w2u
2〉) + O(u4) = Cw2u

2 + au2 + O(u3),

which results in the following linear equation for w2 at u2-terms:

Cw2 + a = 0.

This linear system has a unique solution, since C is invertible (because
λ = 0 is not an eigenvalue of C). Thus,

w2 = −C−1a,

and the restriction of (5.15) to the center manifold (5.22) up to (and in-
cluding) the third-order term is given by

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈b, C−1a〉)u3 + O(u4). (5.21)

Notice that, in fact, the quadratic term in (5.21) is exactly the same as in
the first equation of (5.15). Thus, to analyze the fold (tangent) bifurcation,
the linear approximation to the center manifold is sufficient, provided σ =

3For example, O(‖v‖2) terms in both equations of (5.15), and O(|u|‖v‖) terms
in the second equation of (5.15) are irrelevant in the following, because they do
not affect the quadratic terms of the restricted equations.
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0. It is enough, therefore, to substitute v = 0 into the first equation of
(5.15). This way of approximating W c by the eigenspace T c obviously fails
to determine even stability of the equilibrium if σ = 0.

Example 5.3 (Failure of the tangent approximation) Consider the
following planar system: {

ẋ = xy + x3,
ẏ = −y − 2x2.

(5.22)

There is an equilibrium at (x, y) = (0, 0). Is it stable or unstable? The
Jacobian matrix

A =
(

0 0
0 −1

)
has eigenvalues λ1 = 0, λ2 = −1. Thus, system (5.22) is written in the
form (5.2) and has a one-dimensional center manifold W c represented by
the scalar function

y = V (x) = 1
2wx

2 + · · · .
Then,

ẏ = wxẋ + · · · = wx2y + wx4 + · · · = w
( 1

2w + 1
)
x4 + · · · ,

or alternatively,

ẏ = −y − 2x2 = − ( 1
2w + 2

)
x2 + · · · .

Therefore, w + 4 = 0 and
w = −4.

Thus, the center manifold has the following quadratic approximation:

V (x) = −2x2 + O(x3),

and the restriction of (5.22) to its center manifold is given by

ẋ = xV (x) + x3 = −2x3 + x3 + O(x4) = −x3 + O(x4).

Therefore, the origin is stable and the phase portrait of the system near
the equilibrium is as sketched in Figure 5.16. By restriction of (5.22) onto
its critical eigenspace y = 0, one gets

ẋ = x3.

This equation has an unstable point at the origin and thus gives the wrong
answer to the stability question. Figure 5.17 compares the equations re-
stricted to W c and T c. ✸
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FIGURE 5.17. Restricted equations: (a) to the center manifold W c; (b) to the
tangent line T c.

Hopf bifurcation (λ1,2 = ±iω0)

Now n0 = 2 and system (5.1) in its eigenbasis takes the form
(

u̇1
u̇2

)
=

(
0 −ω0
ω0 0

)(
u1
u2

)
+

(
G1(u1, u2, v)
G2(u1, u2, v)

)
,

v̇ = Cv + H1(u1, u2, v),
(5.23)

where u = (u1, u2)T ∈ R
2, v ∈ R

n−2. It is convenient to rewrite (5.23) into
complex form by introducing z = u1 + iu2:{

ż = iω0z + G(z, z̄, v),
v̇ = Cv + H(z, z̄, v). (5.24)

Here G and H are smooth complex-valued functions of z, z̄ ∈ C
1, and

v ∈ R
n−2. Actually, z can be viewed as a new “coordinate” on the critical
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eigenspace T c = {v = 0} of (5.23). The center manifold W c therefore has
the representation

v = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3), (5.25)

with unknown wij ∈ C
n−2. Since V must be real, w11 is real and w20 = w̄02.

Let us write system (5.24) in more detail using the Taylor expansions in
z, z̄, and v:

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, v〉z + 〈G01, v〉z̄ + · · · ,
v̇ = Cv + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.26)

where G20, G11, G02, G21 ∈ C
1; G01, G10, Hij ∈ C

n−2; H11 is real; and
H20 = H02. The scalar product now means that 〈G, v〉 =

∑n−2
i=1 Givi. In

terms of the functions G and H from (5.24), we get

Gij =
∂i+j

∂zi∂z̄j
G(z, z̄, 0)

∣∣∣∣
z=0

, i + j ≥ 2, (5.27)

G10,i =
∂2

∂vi∂z
G(z, z̄, v)

∣∣∣∣
z=0,v=0

, i = 1, 2, . . . , n− 2, (5.28)

G01,i =
∂2

∂vi∂z̄
G(z, z̄, v)

∣∣∣∣
z=0,v=0

, i = 1, 2, . . . , n− 2, (5.29)

Hij =
∂i+j

∂zi∂z̄j
H(z, z̄, 0)

∣∣∣∣
z=0

, i + j = 2. (5.30)

Substitution of (5.25) into (5.26) gives, at the quadratic level,
(2iω0E − C)w20 = H20,

−Cw11 = H11,
(−2iω0E − C)w02 = H02.

(5.31)

Thus,

w20 = (2iω0E − C)−1H20,

w11 = −C−1H11,

w02 = (−2iω0E − C)−1H02.

Here E is the identity matrix and the matrices (2iω0E−C), C, (−2iω0E−
C) are invertible, since 0 and ±2iω0 are not eigenvalues of C. Now, the
restriction of (5.24) to its center manifold, up to cubic terms, can be written
as follows:

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2

+ 1
2 (G21 − 2〈G10, C

−1H11〉+ 〈G01, (2iω0E − C)−1H20〉)z2z̄ + · · · ,
(5.32)



5.4 Computation of center manifolds 169

eigenspace T c = {v = 0} of (5.23). The center manifold W c therefore has
the representation

v = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3), (5.25)

with unknown wij ∈ C
n−2. Since V must be real, w11 is real and w20 = w̄02.

Let us write system (5.24) in more detail using the Taylor expansions in
z, z̄, and v:

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, v〉z + 〈G01, v〉z̄ + · · · ,
v̇ = Cv + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.26)

where G20, G11, G02, G21 ∈ C
1; G01, G10, Hij ∈ C

n−2; H11 is real; and
H20 = H02. The scalar product now means that 〈G, v〉 =

∑n−2
i=1 Givi. In

terms of the functions G and H from (5.24), we get

Gij =
∂i+j

∂zi∂z̄j
G(z, z̄, 0)

∣∣∣∣
z=0

, i + j ≥ 2, (5.27)

G10,i =
∂2

∂vi∂z
G(z, z̄, v)

∣∣∣∣
z=0,v=0

, i = 1, 2, . . . , n− 2, (5.28)

G01,i =
∂2

∂vi∂z̄
G(z, z̄, v)

∣∣∣∣
z=0,v=0

, i = 1, 2, . . . , n− 2, (5.29)

Hij =
∂i+j

∂zi∂z̄j
H(z, z̄, 0)

∣∣∣∣
z=0

, i + j = 2. (5.30)

Substitution of (5.25) into (5.26) gives, at the quadratic level,
(2iω0E − C)w20 = H20,

−Cw11 = H11,
(−2iω0E − C)w02 = H02.

(5.31)

Thus,

w20 = (2iω0E − C)−1H20,

w11 = −C−1H11,

w02 = (−2iω0E − C)−1H02.

Here E is the identity matrix and the matrices (2iω0E−C), C, (−2iω0E−
C) are invertible, since 0 and ±2iω0 are not eigenvalues of C. Now, the
restriction of (5.24) to its center manifold, up to cubic terms, can be written
as follows:
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where only the cubic term needed for the Hopf bifurcation analysis is dis-
played.

Now consider the discrete-time case.

Fold bifurcation of maps (µ1 = 1)

In this case, system (5.6) can be written as{
ũ = u + 1

2σu
2 + u〈b, v〉+ 1

6δu
3 + · · · ,

ṽ = Cv + 1
2au

2 + · · · , (5.33)

where u, ũ ∈ R
1, v, ṽ ∈ R

n−1; σ, δ ∈ R
1, a, b ∈ R

n−1 are given by equations
(5.16) through (5.19); and C is an (n− 1)× (n− 1) matrix without eigen-
values on the unit circle. Here 〈·, ·〉 denotes the scalar product in R

n−1, and
only the terms needed in what follows are presented. The center manifold
of (5.33) is given by

v = V (u) = 1
2w2u

2 + O(u3),

where w2 ∈ R
n−1 is unknown. Substituting this expansion into the second

equation of (5.33), using the first equation and the invariance of the center
manifold (if v = V (u), then ṽ = V (ũ)), we get the following linear equation
for w2, collecting u2-terms:

(C − E)w2 + a = 0. (5.34)

This linear system has a unique solution, since (C−E) is invertible because
µ = 1 is not an eigenvalue of C. Thus,

w2 = (E − C)−1a,

and the restriction of (5.33) to the center manifold, up to (and including)
the third-order term, is given by

u �→ u + 1
2σu

2 + 1
6

(
δ + 3〈b, (E − C)−1a〉)u3 + O(u4). (5.35)

The quadratic term in (5.35) is exactly the same as in the first equation of
(5.33). Thus, to analyze the fold (tangent) bifurcation of maps we need no
nonlinear approximations to the center manifold, provided σ = 0. Substi-
tution of v = 0 into the first equation of (5.33) gives the correct restriction
up to second-order terms.

Flip bifurcation (µ1 = −1)

Now system (5.6) can be written as{
ũ = −u + 1

2σu
2 + u〈b, v〉+ 1

6δu
3 + · · · ,

ṽ = Cv + 1
2au

2 + · · · , (5.36)
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with the same notation as in the previous case, and σ, δ, a, and b are given
by equations (5.16)–(5.19). The center manifold is again represented by
v = V (u) = 1

2w2u
2 + O(u3), where w2 ∈ R

n−1 is a vector satisfying the
same linear equation (5.34). Therefore, the restriction of (5.36) to the center
manifold is

u �→ −u + 1
2σu

2 + 1
6

(
δ + 3〈b, (E − C)−1a〉)u3 + O(u4).

Neimark-Sacker bifurcation (µ1,2 = e±iθ0)

In the eigenbasis and written with complex notation, system (5.6) can be
denoted as

z̃ = eiθ0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, v〉z + 〈G01, v〉z̄ + · · · ,
ṽ = Cv + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.37)

where the notation is the same as in the Hopf case, and Gij and Hij are
given by the expressions (5.27)–(5.30). The center manifold of (5.37) has
the representation

v = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3),

with wij ∈ C
n−2. The Taylor coefficients satisfy the linear equations

(e2iθ0E − C)w20 = H20,
(E − C)w11 = H11,

(e−2iθ0E − C)w02 = H02.
(5.38)

Thus,
w20 = (e2iθ0E − C)−1H20,
w11 = (E − C)−1H11,
w02 = (e−2iθ0E − C)−1H02.

The matrices in (5.38) are invertible since e±2iθ0 and 1 are not eigenvalues
of C. The restriction of (5.37) to the center manifold therefore has the form

z �→ eiθ0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 1
2

(
2〈G10, (E − C)−1H11〉+ 〈G01, (e2iθ0E − C)−1H20〉

)
z2z̄ + · · · ,

where the only cubic terms retained are those that are necessary for ana-
lyzing a generic Neimark-Sacker bifurcation.

5.4.2 Projection method for center manifold computation
There is a useful method for center manifold computation which avoids
the transformation of the system into its eigenbasis (to the form (5.2) or
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(5.6)). Instead, only eigenvectors corresponding to the critical eigenvalues
of A and its transpose AT are used to “project” the system into the crit-
ical eigenspace and its complement. This method can be applied to both
continuous- and discrete-time finite-dimensional systems, as well as to some
infinite-dimensional systems (see Appendix 1) with few modifications.

As usual, we start with the continuous-time case. Suppose system (5.1)
is written as

ẋ = Ax + F (x), x ∈ R
n, (5.39)

where F (x) = O(‖x‖2) is a smooth function.

Fold bifurcation

In this case, A has a simple zero eigenvalue λ1 = 0, and the corresponding
critical eigenspace T c is one-dimensional and spanned by an eigenvector q ∈
R
n such that Aq = 0. Let p ∈ R

n be the adjoint eigenvector, that is, AT p =
0, where AT is the transposed matrix.4 It is possible and convenient to
normalize p with respect to q : 〈p, q〉 = 1, where 〈·, ·〉 is the standard scalar
product in R

n. The following lemma follows from the Fredholm Alternative
Theorem.

Lemma 5.2 Let T su denote an (n − 1)-dimensional linear eigenspace of
A corresponding to all eigenvalues other than 0. Then y ∈ T su if and only
if 〈p, y〉 = 0. ✷

Using the lemma, we can “decompose” any vector x ∈ R
n as

x = uq + y,

where uq ∈ T c, y ∈ T su. If q and p are normalized as above, we get explicit
expressions for u and y: {

u = 〈p, x〉,
y = x− 〈p, x〉q. (5.40)

Two operators can thus be defined:

Pcx = 〈p, x〉q, Psux = x− 〈p, x〉q.

These operators are projections onto T c and T su, respectively, and

P 2
c = Pc, P

2
su = Psu, PcPsu = PsuPc = 0.

The scalar u and the vector y can be considered as new “coordinates”
on R

n. Although y ∈ R
n, its components always satisfy the orthogonality

4Recall that 〈x,Ay〉 = 〈ATx, y〉 for any x, y ∈ R
n.
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condition 〈p, y〉 = 0. In these new coordinates, system (5.39) can be written
as {

u̇ = 〈p, F (uq + y)〉,
ẏ = Ay + F (uq + y)− 〈p, F (uq + y)〉q. (5.41)

To obtain these equations, one has to take into account (5.40) and the
eigenvector definitions and normalizations. Equivalently, one can apply the
above projection operators to system (5.39). Using Taylor expansions, we
can write (5.41) in a form similar to (5.15):{

u̇ = 1
2σu

2 + u〈b, y〉+ 1
6δu

3 + · · · ,
ẏ = Ay + 1

2au
2 + · · · , (5.42)

where u ∈ R
1, y ∈ R

n, σ, δ ∈ R
1, a, b ∈ R

n, and 〈b, y〉 =
∑n

i=1 biyi is now
the standard scalar product in R

n. For σ, δ, a, and b we get the following
expressions:

σ =
∂2

∂u2 〈p, F (uq)〉
∣∣∣∣
u=0

, (5.43)

δ =
∂3

∂u3 〈p, F (uq)〉
∣∣∣∣
u=0

, (5.44)

a =
∂2

∂u2F (uq)
∣∣∣∣
u=0

− σq, (5.45)

and the components of the vector b are given by

bi =
∂2

∂yi∂u
〈p, F (uq + y)〉

∣∣∣∣
u=0,y=0

, (5.46)

where i = 1, 2, . . . , n.
We can now proceed exactly in the same way as in Section 5.4.1. The

center manifold has the representation

y = V (u) = 1
2w2u

2 + O(u3),

where now w2 ∈ T su ⊂ R
n, which means 〈p, w2〉 = 0. The vector w2 satisfies

an equation in R
n that formally resembles the corresponding equation in

Section 5.4.1,
Aw2 + a = 0. (5.47)

Here, however, we have a slight complication, since A is obviously nonin-
vertible in R

n (λ = 0 is its eigenvalue). This difficulty is easy to overcome.
Notice that a ∈ T su, since 〈p, a〉 = 0. The restriction of the linear trans-
formation corresponding to A to its invariant subspace T su is invertible.
Thus, equation (5.47) has a unique solution w2 ∈ T su. If we denote this
solution by

w2 = −AINV a,
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the restriction of (5.42) to the center manifold takes the form

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈b, AINV a〉)u3 + O(u4). (5.48)

To check that a fold bifurcation is nondegenerate, we need only to compute
σ. For this, the linear approximation of W c is enough, and σ is given by
(5.43), where f from (5.1) can be used instead of F . If σ = 0, the third-order
term must be computed.

Actually, explicit computation of the vector b using (5.46) is not neces-
sary for finding the restricted equation. Indeed, let the function F (x) be
written as

F (x) = 1
2B(x, x) + 1

6C(x, x, x) + O(‖x‖4),

where B(x, y) and C(x, y, z) are multilinear functions. In coordinates, we
have

Bi(x, y) =
n∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk,

and

Ci(x, y, z) =
n∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykzl,

where i = 1, 2, . . . , n. Then the scalar product 〈b, y〉 can be expressed as
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and the restricted equation (5.48) takes the form

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈p,B(q, AINV a)〉)u3 + O(u4), (5.49)

where

σ = 〈p,B(q, q)〉, δ = 〈p, C(q, q, q)〉, a = B(q, q)− 〈p,B(q, q)〉q. (5.50)

Remarks:
(1) One can compute w = AINV a by solving the following (n + 1)-

dimensional bordered system(
A q
pT 0

)(
w
u

)
=

(
a
0

)
(5.51)

for w ∈ R
n and u ∈ R

1. Here q and p are the above-defined and normalized
eigenvectors of A and AT , respectively. The (n+ 1)× (n+ 1) matrix of this
system is nonsingular. Indeed,(

A q
pT 0

)(
w
u

)
=

(
0
0

)
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the restriction of (5.42) to the center manifold takes the form

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈b, AINV a〉)u3 + O(u4). (5.48)

To check that a fold bifurcation is nondegenerate, we need only to compute
σ. For this, the linear approximation of W c is enough, and σ is given by
(5.43), where f from (5.1) can be used instead of F . If σ = 0, the third-order
term must be computed.

Actually, explicit computation of the vector b using (5.46) is not neces-
sary for finding the restricted equation. Indeed, let the function F (x) be
written as

F (x) = 1
2B(x, x) + 1

6C(x, x, x) + O(‖x‖4),

where B(x, y) and C(x, y, z) are multilinear functions. In coordinates, we
have

Bi(x, y) =
n∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk,

and

Ci(x, y, z) =
n∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykzl,

where i = 1, 2, . . . , n. Then the scalar product 〈b, y〉 can be expressed as

〈b, y〉 = 〈p,B(q, y)〉,

and the restricted equation (5.48) takes the form

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈p,B(q, AINV a)〉)u3 + O(u4), (5.49)

where

σ = 〈p,B(q, q)〉, δ = 〈p, C(q, q, q)〉, a = B(q, q)− 〈p,B(q, q)〉q. (5.50)

Remarks:
(1) One can compute w = AINV a by solving the following (n + 1)-

dimensional bordered system(
A q
pT 0

)(
w
u

)
=

(
a
0

)
(5.51)

for w ∈ R
n and u ∈ R

1. Here q and p are the above-defined and normalized
eigenvectors of A and AT , respectively. The (n+ 1)× (n+ 1) matrix of this
system is nonsingular. Indeed,(

A q
pT 0

)(
w
u

)
=

(
0
0

)



5.4 Computation of center manifolds 175

implies w = 0 and u = 0, so the null-space of the bordered matrix is trivial.
Suppose now that (w, u)T is the solution to (5.51). Equivalently,{

Aw + uq = a,
〈p, w〉 = 0.

Thus, according to the second equation, w ∈ T su. Taking the scalar product
of the first equation with p, we obtain

〈p,Aw〉+ u〈p, q〉 = 〈p, a〉.

However, 〈p, q〉 = 1, 〈p, a〉 = 0, and 〈p,Aw〉 = 〈AT p, w〉 = 0. Therefore,
u = 0 and

Aw = a.

Thus, by definition, w = AINV a.
(2) The choice of normalization for q is irrelevant. Indeed, if the vector q is

substituted by γq with some nonzero γ ∈ R
1 but the relative normalization

〈p, q〉 = 1 is preserved, the coefficients of the restricted equation will change,
although the equation can easily be scaled back to the original form by the
substitution u �→ 1

γu. For the quadratic and cubic terms this can easily be
seen from (5.49) and (5.50). ♦

Hopf bifurcation

In this case, A has a simple pair of complex eigenvalues on the imaginary
axis: λ1,2 = ±iω0, ω0 > 0, and these eigenvalues are the only eigenvalues
with Re λ = 0. Let q ∈ C

n be a complex eigenvector corresponding to λ1:

Aq = iω0q, Aq̄ = −iω0q̄

(as in the fold case, its particular normalization is not important). Introduce
also the adjoint eigenvector p ∈ C

n having the properties

AT p = −iω0p, AT p̄ = iω0p̄,

and satisfying the normalization

〈p, q〉 = 1, (5.52)

where 〈p, q〉 =
∑n

i=1 p̄iqi is the standard scalar product in C
n (linear with

respect to the second argument). The critical real eigenspace T c corre-
sponding to ±iω0 is now two-dimensional and is spanned by {Re q, Im q}.
The real eigenspace T su corresponding to all eigenvalues of A other than
±iω0 is (n− 2)-dimensional. The following lemma is valid.

Lemma 5.3 y ∈ T su if and only if 〈p, y〉 = 0. ✷
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Here y ∈ R
n is real, while p ∈ C

n is complex. Therefore, the condition in
the lemma implies two real constraints on y (the real and imaginary parts
of 〈p, y〉 must vanish). As in the previous case, this lemma allows us to
decompose any x ∈ R

n as

x = zq + z̄q̄ + y,

where z ∈ C
1, and zq + z̄q̄ ∈ T c, y ∈ T su. The complex variable z is a

coordinate on T c. We have{
z = 〈p, x〉,
y = x− 〈p, x〉q − 〈p̄, x〉q̄. (5.53)

(Notice that 〈p, q̄〉 = 0, see Lemma 3.3.) In the coordinates of (5.53), system
(5.39) has the form

ż = iω0z + 〈p, F (zq + z̄q̄ + y)〉,
ẏ = Ay + F (zq + z̄q̄ + y)

− 〈p, F (zq + z̄q̄ + y)〉q
− 〈p̄, F (zq + z̄q̄ + y)〉q̄.

(5.54)

System (5.54) is (n+2)-dimensional, but one has to remember the two real
constraints imposed on y. The system can now be written in a form similar
to (5.26):

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, y〉z + 〈G01, y〉z̄ + · · · ,
ẏ = Ay + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.55)

where G20, G11, G02, G21 ∈ C
1; G01, G10, Hij ∈ C

n; and the scalar prod-
uct in C

n is used. Complex number and vectors involved in (5.55) can be
computed by the following formulas:

Gij =
∂i+j

∂zi∂z̄j
〈p, F (zq + z̄q̄)〉

∣∣∣∣
z=0

, i + j ≥ 2,

G10,i =
∂2

∂yi∂z
〈p, F (zq + z̄q̄ + y)〉

∣∣∣∣
z=0,y=0

, i = 1, 2, . . . , n,

G01,i =
∂2

∂yi∂z̄
〈p, F (zq + z̄q̄ + y)〉

∣∣∣∣
z=0,y=0

, i = 1, 2, . . . , n,

Hij =
∂i+j

∂zi∂z̄j
F (zq + z̄q̄)

∣∣∣∣
z=0

−Gijq −Gjiq̄, i + j = 2.

The center manifold now has the representation

y = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3),
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where 〈p, wij〉 = 0. The vectors wij ∈ C
n can be found from the linear

equations 
(2iω0E −A)w20 = H20,

−Aw11 = H11,
(−2iω0E −A)w02 = H02

(cf. (5.31)). These equations have unique solutions since the matrices in
their left-hand sides are invertible in the ordinary sense because 0,±2iω0
are not eigenvalues of A. Thus, this case is even simpler than that of the
fold, and the restricted equation can be written in the same way as (5.32):

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2

+ 1
2 (G21 − 2〈G10, A

−1H11〉+ 〈G01, (2iω0E −A)−1H20〉)z2z̄ + · · · ,
(5.56)

where the scalar product in C
n is used. A nice feature of the above algo-

rithm is that it gives the restricted system (5.56) directly in the complex
form suitable for the Lyapunov coefficient computations as described in
Chapter 3.

As in the fold case, write F (x) in terms of multilinear functions B(x, y)
and C(x, y, z):

F (x) = 1
2B(x, x) + 1

6C(x, x, x) + O(‖x‖4). (5.57)

Then we can express

〈G10, y〉 = 〈p,B(q, y)〉, 〈G01, y〉 = 〈p,B(q̄, y)〉,
and write the restricted equation (5.56) in the form

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2

+ 1
2 (G21 − 2〈p,B(q, A−1H11)〉+ 〈p,B(q̄, (2iω0E −A)−1H20)〉)z2z̄

+ · · · ,
(5.58)

where

G20 = 〈p,B(q, q)〉, G11 = 〈p,B(q, q̄)〉, G02 = 〈p,B(q̄, q̄)〉, (5.59)

G21 = 〈p, C(q, q, q̄)〉, (5.60)

and {
H20 = B(q, q)− 〈p,B(q, q)〉q − 〈p̄, B(q, q)〉q̄,
H11 = B(q, q̄)− 〈p,B(q, q̄)〉q − 〈p̄, B(q, q̄)〉q̄.

(5.61)

Substituting of (5.59)–(5.61) into (5.58), taking into account the identities

A−1q =
1
iω0

q, A−1q̄ = − 1
iω0

q̄, (2iω0E −A)−1q =
1
iω0

q,
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(2iω0E −A)−1q̄ =
1

3iω0
q̄,

transforms (5.58) into the equation

ż = iω0z + 1
2g20z

2 + g11zz̄ + 1
2g02z̄

2 + 1
2g21z

2z̄ + · · · ,

where
g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉,

and

g21 = 〈p, C(q, q, q̄)〉
− 2〈p,B(q, A−1B(q, q̄)))〉+ 〈p,B(q̄, (2iω0E −A)−1B(q, q))〉
+

1
iω0

〈p,B(q, q)〉〈p,B(q, q̄)〉

− 2
iω0

|〈p,B(q, q̄)〉|2 − 1
3iω0

|〈p,B(q̄, q̄)〉|2 .

Notice that the terms in the last line are purely imaginary while the term
in the third line contains the same scalar products as in the product g20g11.
Thus, the application of formula (3.20) from Chapter 3,

l1(0) =
1

2ω2
0

Re(ig20g11 + ω0g21),

gives the following invariant expression for the first Lyapunov coefficient:

l1(0) =
1

2ω0
Re

[〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉
+ 〈p,B(q̄, (2iω0E −A)−1B(q, q))〉] . (5.62)

This formula seems to be the most convenient for analytical treatment of
the Hopf bifurcation in n-dimensional systems with n ≥ 2. It does not
require a preliminary transformation of the system into its eigenbasis, and
it expresses l1(0) using original linear, quadratic, and cubic terms, assuming
that only the critical (ordinary and adjoint) eigenvectors of the Jacobian
matrix are known. In Chapter 10 it will be shown how to implement this
formula for the numerical evaluation of l1(0).

Example 5.4 (Hopf bifurcation in a feedback-control system)
Consider the following nonlinear differential equation depending on positive
parameters (α, β):

d3y

dt3
+ α

d2y

dt2
+ β

dy

dt
+ y(1− y) = 0,
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which describes a simple feedback control system of Lur’e type. By intro-
ducing x1 = y, x2 = ẋ1, and x3 = ẋ2, we can rewrite the equation as the
equivalent third-order system

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −αx3 − βx2 − x1 + x2

1.
(5.63)

For all values of (α, β), system (5.63) has two equilibria x(0) = (0, 0, 0) and
x(1) = (1, 0, 0). We will analyze the equilibrium at the origin. The Jacobian
matrix of (5.63) evaluated at x(0) has the form 0 1 0

0 0 1
−1 −β −α


with the characteristic equation

λ3 + αλ2 + βλ + 1 = 0.

To find a relation between α and β corresponding to the Hopf bifurcation of
x(0), substitute λ = iω into the last equation. This shows that the charac-
teristic polynomial has a pair of purely imaginary roots λ1,2 = ±iω, ω > 0,
if

α = α0(β) =
1
β
, β > 0. (5.64)

It is easy to check that the origin is stable if α > α0 and unstable if α < α0.
The transition is caused by a simple pair of complex-conjugate eigenvalues
crossing the imaginary axis at λ = ±iω, where

ω2 = β.

The velocity of the crossing is nonzero and the third eigenvalue λ3 remains
negative for nearby parameter values.5 Thus, a Hopf bifurcation takes place.
In order to analyze the bifurcation (i.e., to determine the direction of the
limit cycle bifurcation), we have to compute the first Lyapunov coefficient
l1(0) of the restricted system on the center manifold at the critical param-
eter values. If l1(0) < 0, the bifurcation is supercritical and a unique stable
limit cycle bifurcates from the origin for α < α0(β). As we shall see, this
is indeed the case in system (5.63).

Therefore, fix α at its critical value α0 given by (5.64) and leave β free to
vary. Notice that the elements of the Jacobian matrix are rational functions
of ω2:

A =

 0 1 0
0 0 1

−1 −ω2 −1/ω2

 .

5At the critical parameter value (5.64), λ3 = − 1
β
< 0.
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limit cycle bifurcates from the origin for α < α0(β). As we shall see, this
is indeed the case in system (5.63).

Therefore, fix α at its critical value α0 given by (5.64) and leave β free to
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