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Introduction to Dynamical Systems

This chapter introduces some basic terminology. First, we define a dynam-
ical system and give several examples, including symbolic dynamics. Then
we introduce the notions of orbits, invariant sets, and their stability. As
we shall see while analyzing the Smale horseshoe, invariant sets can have
very complex structures. This is closely related to the fact discovered in
the 1960s that rather simple dynamical systems may behave “randomly,”
or “chaotically.” Finally, we discuss how differential equations can define
dynamical systems in both finite- and infinite-dimensional spaces.

1.1 Definition of a dynamical system

The notion of a dynamical system is the mathematical formalization of the
general scientific concept of a deterministic process. The future and past
states of many physical, chemical, biological, ecological, economical, and
even social systems can be predicted to a certain extent by knowing their
present state and the laws governing their evolution. Provided these laws
do not change in time, the behavior of such a system could be considered
as completely defined by its initial state. Thus, the notion of a dynamical
system includes a set of its possible states (state space) and a law of the
evolution of the state in time. Let us discuss these ingredients separately
and then give a formal definition of a dynamical system.
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FIGURE 1.1. Classical pendulum.

1.1.1 State space
All possible states of a system are characterized by the points of some set X.
This set is called the state space of the system. Actually, the specification of
a point x ∈ X must be sufficient not only to describe the current “position”
of the system but also to determine its evolution. Different branches of
science provide us with appropriate state spaces. Often, the state space is
called a phase space, following a tradition from classical mechanics.

Example 1.1 (Pendulum) The state of an ideal pendulum is com-
pletely characterized by defining its angular displacement ϕ (mod 2π) from
the vertical position and the corresponding angular velocity ϕ̇ (see Figure
1.1). Notice that the angle ϕ alone is insufficient to determine the future
state of the pendulum. Therefore, for this simple mechanical system, the
state space is X = S

1×R
1, where S

1 is the unit circle parametrized by the
angle, and R

1 is the real axis corresponding to the set of all possible veloc-
ities. The set X can be considered as a smooth two-dimensional manifold
(cylinder) in R

3. ✸

Example 1.2 (General mechanical system) In classical mechanics,
the state of an isolated system with s degrees of freedom is characterized
by a 2s-dimensional real vector:

(q1, q2, . . . , qs, p1, p2, . . . , ps)T ,

where qi are the generalized coordinates, while pi are the corresponding
generalized momenta. Therefore, in this case, X = R

2s. If k coordinates are
cyclic, X = S

k × R
2s−k. In the case of the pendulum, s = k = 1, q1 = ϕ,

and we can take p1 = ϕ̇. ✸

Example 1.3 (Quantum system) In quantum mechanics, the state of
a system with two observable states is characterized by a vector

ψ =
(

a1
a2

)
∈ C

2,
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where ai, i = 1, 2, are complex numbers called amplitudes, satisfying the
condition

|a1|2 + |a2|2 = 1.

The probability of finding the system in the ith state is equal to pi =
|ai|2, i = 1, 2. ✸

Example 1.4 (Chemical reactor) The state of a well-mixed isothermic
chemical reactor is defined by specifying the volume concentrations of the
n reacting chemical substances

c = (c1, c2, . . . , cn)T .

Clearly, the concentrations ci must be nonnegative. Thus,

X = {c : c = (c1, c2, . . . , cn)T ∈ R
n, ci ≥ 0}.

If the concentrations change from point to point, the state of the reactor is
defined by the reagent distributions ci(x), i = 1, 2, . . . , n. These functions
are defined in a bounded spatial domain Ω, the reactor interior, and charac-
terize the local concentrations of the substances near a point x. Therefore,
the state space X in this case is a function space composed of vector-valued
functions c(x), satisfying certain smoothness and boundary conditions. ✸

Example 1.5 (Ecological system) Similar to the previous example,
the state of an ecological community within a certain domain Ω can be
described by a vector with nonnegative components

N = (N1, N2, . . . , Nn)T ∈ R
n,

or by a vector function

N(x) = (N1(x), N2(x), . . . , Nn(x))T , x ∈ Ω,

depending on whether the spatial distribution is essential for an adequate
description of the dynamics. Here Ni is the number (or density) of the ith
species or other group (e.g., predators or prey). ✸

Example 1.6 (Symbolic dynamics) To complete our list of state
spaces, consider a set Ω2 of all possible bi-infinite sequences of two symbols,
say {1, 2}. A point ω ∈ X is the sequence

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .},

where ωi ∈ {1, 2}. Note that the zero position in a sequence must be pointed
out; for example, there are two distinct periodic sequences that can be
written as

ω = {. . . , 1, 2, 1, 2, 1, 2, . . .},
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one with ω0 = 1, and the other with ω0 = 2. The space Ω2 will play an
important role in the following.

Sometimes, it is useful to identify two sequences that differ only by a shift
of the origin. Such sequences are called equivalent. The classes of equivalent
sequences form a set denoted by Ω̃2. The two periodic sequences mentioned
above represent the same point in Ω̃2. ✸

In all the above examples, the state space has a certain natural struc-
ture, allowing for comparison between different states. More specifically, a
distance ρ between two states is defined, making these sets metric spaces.

In the examples from mechanics and in the simplest examples from chem-
istry and ecology, the state space was a real vector space R

n of some fi-
nite dimension n, or a (sub-)manifold (hypersurface) in this space. The
Euclidean norm can be used to measure the distance between two states
parametrized by the points x, y ∈ R

n, namely

ρ(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉 =

√√√√ n∑
i=1

(xi − yi)2, (1.1)

where 〈·, ·〉 is the standard scalar product in R
n,

〈x, y〉 = xT y =
n∑

i=1

xiyi.

If necessary, the distance between two (close) points on a manifold can
be measured as the minimal length of a curve connecting these points
within the manifold. Similarly, the distance between two states ψ,ϕ of the
quantum system from Example 1.3 can be defined using the standard scalar
product in C

n,

〈ψ,ϕ〉 = ψ̄Tϕ =
n∑

i=1

ψ̄iϕi,

with n = 2. Meanwhile, 〈ψ,ψ〉 = 〈ϕ,ϕ〉 = 1.
When the state space is a function space, there is a variety of possible

distances, depending on the smoothness (differentiability) of the functions
allowed. For example, we can introduce a distance between two continuous
vector-valued real functions u(x) and v(x) defined in a bounded closed
domain Ω ∈ R

m by

ρ(u, v) = ‖u− v‖ = max
i=1,...,n

sup
x∈Ω

|ui(x)− vi(x)|.

Finally, in Example 1.6 the distance between two sequences ω, θ ∈ Ω2
can be measured by

ρ(ω, θ) =
+∞∑

k=−∞
δωkθk

2−|k|, (1.2)
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where

δωkθk
=

{
0 if ωk = θk,
1 if ωk = θk.

According to this formula, two sequences are considered to be close if they
have a long block of coinciding elements centered at position zero (check!).

Using the previously defined distances, the introduced state spaces X are
complete metric spaces. Loosely speaking, this means that any sequence of
states, all of whose sufficiently future elements are separated by an arbi-
trarily small distance, is convergent (the space has no “holes”).

According to the dimension of the underlying state space X, the dy-
namical system is called either finite- or infinite-dimensional. Usually, one
distinguishes finite-dimensional systems defined in X = R

n from those de-
fined on manifolds.

1.1.2 Time
The evolution of a dynamical system means a change in the state of the
system with time t ∈ T , where T is a number set. We will consider two
types of dynamical systems: those with continuous (real) time T = R

1,
and those with discrete (integer) time T = Z. Systems of the first type
are called continuous-time dynamical systems, while those of the second
are termed discrete-time dynamical systems. Discrete-time systems appear
naturally in ecology and economics when the state of a system at a certain
moment of time t completely determines its state after a year, say at t+ 1.

1.1.3 Evolution operator
The main component of a dynamical system is an evolution law that de-
termines the state xt of the system at time t, provided the initial state x0
is known. The most general way to specify the evolution is to assume that
for given t ∈ T a map ϕt is defined in the state space X,

ϕt : X → X,

which transforms an initial state x0 ∈ X into some state xt ∈ X at time t:

xt = ϕtx0.

The map ϕt is often called the evolution operator of the dynamical system.
It might be known explicitly; however, in most cases, it is defined indirectly
and can be computed only approximately. In the continuous-time case, the
family {ϕt}t∈T of evolution operators is called a flow.

Note that ϕtx may not be defined for all pairs (x, t) ∈ X×T . Dynamical
systems with evolution operator ϕt defined for both t ≥ 0 and t < 0 are
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called invertible. In such systems the initial state x0 completely defines not
only the future states of the system, but its past behavior as well. However,
it is useful to consider also dynamical systems whose future behavior for t >
0 is completely determined by their initial state x0 at t = 0, but the history
for t < 0 can not be unambigously reconstructed. Such (noninvertible)
dynamical systems are described by evolution operators defined only for
t ≥ 0 (i.e., for t ∈ R

1
+ or Z+). In the continuous-time case, they are called

semiflows.
It is also possible that ϕtx0 is defined only locally in time, for example,

for 0 ≤ t < t0, where t0 depends on x0 ∈ X. An important example of
such a behavior is a “blow-up,” when a continuous-time system in X = R

n

approaches infinity within a finite time, i.e.,

‖ϕtx0‖ → +∞,

for t→ t0.
The evolution operators have two natural properties that reflect the de-

terministic character of the behavior of dynamical systems. First of all,

(DS.0) ϕ0 = id,

where id is the identity map on X, id x = x for all x ∈ X. The property
(DS.0) implies that the system does not change its state “spontaneously.”
The second property of the evolution operators reads

(DS.1) ϕt+s = ϕt ◦ ϕs.

It means that
ϕt+sx = ϕt(ϕsx)

for all x ∈ X and t, s ∈ T , such that both sides of the last equation are
defined.1 Essentially, the property (DS.1) states that the result of the evo-
lution of the system in the course of t+ s units of time, starting at a point
x ∈ X, is the same as if the system were first allowed to change from the
state x over only s units of time and then evolved over the next t units
of time from the resulting state ϕsx (see Figure 1.2). This property means
that the law governing the behavior of the system does not change in time:
The system is “autonomous.”

For invertible systems, the evolution operator ϕt satisfies the property
(DS.1) for t and s both negative and nonnegative. In such systems, the
operator ϕ−t is the inverse to ϕt, (ϕt)−1 = ϕ−t, since

ϕ−t ◦ ϕt = id.

1Whenever possible, we will avoid explicit statements on the domain of defi-
nition of ϕtx.
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FIGURE 1.2. Evolution operator.

A discrete-time dynamical system with integer t is fully specified by
defining only one map f = ϕ1, called “time-one map.” Indeed, using (DS.1),
we obtain

ϕ2 = ϕ1 ◦ ϕ1 = f ◦ f = f2,

where f2 is the second iterate of the map f . Similarly,

ϕk = fk

for all k > 0. If the discrete-time system is invertible, the above equation
holds for k ≤ 0, where f0 = id.

Finally, let us point out that, for many systems, ϕtx is a continuous
function of x ∈ X, and if t ∈ R

1, it is also continuous in time. Here,
the continuity is supposed to be defined with respect to the corresponding
metric or norm in X. Furthermore, many systems defined on R

n, or on
smooth manifolds in R

n, are such that ϕtx is smooth as a function of
(x, t). Such systems are called smooth dynamical systems.

1.1.4 Definition of a dynamical system
Now we are able to give a formal definition of a dynamical system.

Definition 1.1 A dynamical system is a triple {T,X, ϕt}, where T is a
time set, X is a state space, and ϕt : X → X is a family of evolution
operators parametrized by t ∈ T and satisfying the properties (DS.0) and
(DS.1).

Let us illustrate the definition by two explicit examples.

Example 1.7 (A linear planar system) Consider the plane X = R
2

and a family of linear nonsingular transformations on X given by the matrix
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depending on t ∈ R
1:

ϕt =
(

eλt 0
0 eµt

)
,

where λ, µ = 0 are real numbers. Obviously, it specifies a continuous-time
dynamical system on X. The system is invertible and is defined for all
(x, t). The map ϕt is continuous (and smooth) in x, as well as in t. ✸

Example 1.8 (Symbolic dynamics) Take the space X = Ω2 of all
bi-infinite sequences of two symbols {1, 2} introduced in Example 1.6. Con-
sider a map σ : X → X, which transforms the sequence

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .} ∈ X

into the sequence θ = σ(ω),

θ = {. . . , θ−2, θ−1, θ0, θ1, θ2, . . .} ∈ X,

where
θk = ωk+1, k ∈ Z.

The map σ merely shifts the sequence by one position to the left. It is
called a shift map. The shift map defines a discrete-time dynamical system
on X, ϕk = σk, that is invertible (find ϕ−1). Notice that two sequences, θ
and ω, are equivalent if and only if θ = σk0(ω) for some k0 ∈ Z. ✸

Later on in the book, we will encounter many different examples of dy-
namical systems and will study them in detail.

1.2 Orbits and phase portraits

Throughout the book we use a geometrical point of view on dynamical
systems. We shall always try to present their properties in geometrical
images, since this facilitates their understanding. The basic geometrical
objects associated with a dynamical system {T,X, ϕt} are its orbits in the
state space and the phase portrait composed of these orbits.

Definition 1.2 An orbit starting at x0 is an ordered subset of the state
space X,

Or(x0) = {x ∈ X : x = ϕtx0, for all t ∈ T such that ϕtx0 is defined}.
Orbits of a continuous-time system with a continuous evolution operator

are curves in the state space X parametrized by the time t and oriented by
its direction of increase (see Figure 1.3). Orbits of a discrete-time system are
sequences of points in the state space X enumerated by increasing integers.
Orbits are often also called trajectories. If y0 = ϕt0x0 for some t0, the
sets Or(x0) and Or(y0) coincide. For example, two equivalent sequences
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θ, ω ∈ Ω2 generate the same orbit of the symbolic dynamics {Z,Ω2, σ
k}.

Thus, all different orbits of the symbolic dynamics are represented by points
in the set Ω̃2 introduced in Example 1.6.

The simplest orbits are equilibria.

Definition 1.3 A point x0 ∈ X is called an equilibrium (fixed point) if
ϕtx0 = x0 for all t ∈ T .

The evolution operator maps an equilibrium onto itself. Equivalently,
a system placed at an equilibrium remains there forever. Thus, equilibria
represent the simplest mode of behavior of the system. We will reserve the
name “equilibrium” for continuous-time dynamical systems, while using
the term “fixed point” for corresponding objects of discrete-time systems.
The system from Example 1.7 obviously has a single equilibrium at the
origin, x0 = (0, 0)T . If λ, µ < 0, all orbits converge to x0 as t→ +∞ (this
is the simplest mode of asymptotic behavior for large time). The symbolic
dynamics from Example 1.7 have only two fixed points, represented by the
sequences

ω1 = {. . . , 1, 1, 1, . . .}
and

ω2 = {. . . , 2, 2, 2, . . .}.
Clearly, the shift σ does not change these sequences: σ(ω1,2) = ω1,2.

Another relatively simple type of orbit is a cycle.

Definition 1.4 A cycle is a periodic orbit, namely a nonequilibrium orbit
L0, such that each point x0 ∈ L0 satisfies ϕt+T0x0 = ϕtx0 with some
T0 > 0, for all t ∈ T .

The minimal T0 with this property is called the period of the cycle L0. If a
system starts its evolution at a point x0 on the cycle, it will return exactly
to this point after every T0 units of time. The system exhibits periodic
oscillations. In the continuous-time case a cycle L0 is a closed curve (see
Figure 1.4(a)).
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system.

Definition 1.5 A cycle of a continuous-time dynamical system, in a neigh-
borhood of which there are no other cycles, is called a limit cycle.

In the discrete-time case a cycle is a (finite) set of points

x0, f(x0), f2(x0), . . . , fN0(x0) = x0,

where f = ϕ1 and the period T0 = N0 is obviously an integer (Figure
1.4(b)). Notice that each point of this set is a fixed point of the N0th
iterate fN0 of the map f . The system from Example 1.7 has no cycles. In
contrast, the symbolic dynamics (Example 1.8) have an infinite number
of cycles. Indeed, any periodic sequence composed of repeating blocks of
length N0 > 1 represents a cycle of period N0, since we need to apply the
shift σ exactly N0 times to transform such a sequence into itself. Clearly,
there is an infinite (though countable) number of such periodic sequences.
Equivalent periodic sequences define the same periodic orbit.

We can roughly classify all possible orbits in dynamical systems into
fixed points, cycles, and “all others.”

Definition 1.6 The phase portrait of a dynamical system is a partitioning
of the state space into orbits.

The phase portrait contains a lot of information on the behavior of a
dynamical system. By looking at the phase portrait, we can determine
the number and types of asymptotic states to which the system tends as
t → +∞ (and as t → −∞ if the system is invertible). Of course, it is
impossible to draw all orbits in a figure. In practice, only several key orbits
are depicted in the diagrams to present phase portraits schematically (as
we did in Figure 1.3). A phase portrait of a continuous-time dynamical
system could be interpreted as an image of the flow of some fluid, where
the orbits show the paths of “liquid particles” as they follow the current.
This analogy explains the use of the term “flow” for the evolution operator
in the continuous-time case.
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1.3 Invariant sets

1.3.1 Definition and types
To further classify elements of a phase portrait – in particular, possible
asymptotic states of the system – the following definition is useful.

Definition 1.7 An invariant set of a dynamical system {T,X, ϕt} is a
subset S ⊂ X such that x0 ∈ S implies ϕtx0 ∈ S for all t ∈ T .

The definition means that ϕtS ⊆ S for all t ∈ T . Clearly, an invariant set
S consists of orbits of the dynamical system. Any individual orbit Or(x0)
is obviously an invariant set. We always can restrict the evolution operator
ϕt of the system to its invariant set S and consider a dynamical system
{T, S, ψt}, where ψt : S → S is the map induced by ϕt in S. We will use
the symbol ϕt for the restriction, instead of ψt.

If the state space X is endowed with a metric ρ, we could consider closed
invariant sets in X. Equilibria (fixed points) and cycles are clearly the
simplest examples of closed invariant sets. There are other types of closed
invariant sets. The next more complex are invariant manifolds, that is,
finite-dimensional hypersurfaces in some space R

K . Figure 1.5 sketches an
invariant two-dimensional torus T

2 of a continuous-time dynamical system
in R

3 and a typical orbit on that manifold. One of the major discoveries in
dynamical systems theory was the recognition that very simple, invertible,
differentiable dynamical systems can have extremely complex closed invari-
ant sets containing an infinite number of periodic and nonperiodic orbits.
Smale constructed the most famous example of such a system. It provides
an invertible discrete-time dynamical system on the plane possessing an
invariant set Λ, whose points are in one-to-one correspondence with all the
bi-infinite sequences of two symbols. The invariant set Λ is not a manifold.
Moreover, the restriction of the system to this invariant set behaves, in a
certain sense, as the symbolic dynamics specified in Example 1.8. That is,
how we can verify that it has an infinite number of cycles. Let us explore
Smale’s example in some detail.

FIGURE 1.5. Invariant torus.
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FIGURE 1.6. Construction of the horseshoe map.

1.3.2 Example 1.9 (Smale horseshoe)
Consider the geometrical construction in Figure 1.6. Take a square S on the
plane (Figure 1.6(a)). Contract it in the horizontal direction and expand
it in the vertical direction (Figure 1.6(b)). Fold it in the middle (Figure
1.6(c)) and place it so that it intersects the original square S along two
vertical strips (Figure 1.6(d)). This procedure defines a map f : R

2 → R
2.

The image f(S) of the square S under this transformation resembles a
horseshoe. That is why it is called a horseshoe map. The exact shape of the
image f(S) is irrelevant; however, let us assume for simplicity that both
the contraction and expansion are linear and that the vertical strips in the
intersection are rectangles. The map f can be made invertible and smooth
together with its inverse. The inverse map f−1 transforms the horseshoe
f(S) back into the square S through stages (d)–(a). This inverse transfor-
mation maps the dotted square S shown in Figure 1.6(d) into the dotted
horizontal horseshoe in Figure 1.6(a), which we assume intersects the orig-
inal square S along two horizontal rectangles.

Denote the vertical strips in the intersection S ∩ f(S) by V1 and V2,

S ∩ f(S) = V1 ∪ V1

(see Figure 1.7(a)). Now make the most important step: Perform the second
iteration of the map f . Under this iteration, the vertical strips V1,2 will be
transformed into two “thin horseshoes” that intersect the square S along
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four narrow vertical strips: V11, V21, V22, and V12 (see Figure 1.7(b)). We
write this as

S ∩ f(S) ∩ f2(S) = V11 ∪ V21 ∪ V22 ∪ V12.

Similarly,
S ∩ f−1(S) = H1 ∪H2,

where H1,2 are the horizontal strips shown in Figure 1.7(c), and

S ∩ f−1(S) ∩ f−2(S) = H11 ∪H12 ∪H22 ∪H21,

with four narrow horizontal strips Hij (Figure 1.7(d)). Notice that f(Hi) =
Vi, i = 1, 2, as well as f2(Hij) = Vij , i, j = 1, 2 (Figure 1.8).
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FIGURE 1.8. Transformation f2(Hij) = Vij , i, j = 1, 2.

Iterating the map f further, we obtain 2k vertical strips in the intersec-
tion S ∩ fk(S), k = 1, 2, . . .. Similarly, iteration of f−1 gives 2k horizontal
strips in the intersection S ∩ f−k(S), k = 1, 2, . . ..

Most points leave the square S under iteration of f or f−1. Forget about
such points, and instead consider a set composed of all points in the plane
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that remain in the square S under all iterations of f and f−1:

Λ = {x ∈ S : fk(x) ∈ S, for all k ∈ Z}.
Clearly, if the set Λ is nonempty, it is an invariant set of the discrete-time
dynamical system defined by f . This set can be alternatively presented as
an infinite intersection,

Λ = · · ·∩f−k(S)∩· · ·∩f−2(S)∩f−1(S)∩S∩f(S)∩f2(S)∩· · · fk(S)∩· · ·
(any point x ∈ Λ must belong to each of the involved sets). It is clear from
this representation that the set Λ has a peculiar shape. Indeed, it should
be located within

f−1(S) ∩ S ∩ f(S),

which is formed by four small squares (see Figure 1.9(a)). Furthermore, it
should be located inside

f−2(S) ∩ f−1(S) ∩ S ∩ f(S) ∩ f2(S),

which is the union of sixteen smaller squares (Figure 1.9(b)), and so forth.
In the limit, we obtain a Cantor (fractal) set.

Lemma 1.1 There is a one-to-one correspondence h : Λ → Ω2, between
points of Λ and all bi-infinite sequences of two symbols.

Proof:
For any point x ∈ Λ, define a sequence of two symbols {1, 2}

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .}
by the formula

ωk =
{

1 if fk(x) ∈ H1,
2 if fk(x) ∈ H2,

(1.3)

for k = 0,±1,±2, . . .. Here, f0 = id, the identity map. Clearly, this formula
defines a map h : Λ → Ω2, which assigns a sequence to each point of the
invariant set.



14 1. Introduction to Dynamical Systems

(b)(a)

Sf (   )S (   )f

UU

S

U

S

U

(   )Sf-1f (   )S 2f -1 (   )SS

U U-2f (   )

FIGURE 1.9. Location of the invariant set.

that remain in the square S under all iterations of f and f−1:

Λ = {x ∈ S : fk(x) ∈ S, for all k ∈ Z}.
Clearly, if the set Λ is nonempty, it is an invariant set of the discrete-time
dynamical system defined by f . This set can be alternatively presented as
an infinite intersection,

Λ = · · ·∩f−k(S)∩· · ·∩f−2(S)∩f−1(S)∩S∩f(S)∩f2(S)∩· · · fk(S)∩· · ·
(any point x ∈ Λ must belong to each of the involved sets). It is clear from
this representation that the set Λ has a peculiar shape. Indeed, it should
be located within

f−1(S) ∩ S ∩ f(S),

which is formed by four small squares (see Figure 1.9(a)). Furthermore, it
should be located inside

f−2(S) ∩ f−1(S) ∩ S ∩ f(S) ∩ f2(S),

which is the union of sixteen smaller squares (Figure 1.9(b)), and so forth.
In the limit, we obtain a Cantor (fractal) set.

Lemma 1.1 There is a one-to-one correspondence h : Λ → Ω2, between
points of Λ and all bi-infinite sequences of two symbols.

Proof:
For any point x ∈ Λ, define a sequence of two symbols {1, 2}

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .}
by the formula

ωk =
{

1 if fk(x) ∈ H1,
2 if fk(x) ∈ H2,

(1.3)

for k = 0,±1,±2, . . .. Here, f0 = id, the identity map. Clearly, this formula
defines a map h : Λ → Ω2, which assigns a sequence to each point of the
invariant set.



1.3 Invariant sets 15

To verify that this map is invertible, take a sequence ω ∈ Ω2, fix m > 0,
and consider a set Rm(ω) of all points x ∈ S, not necessarily belonging to
Λ, such that

fk(x) ∈ Hωk
,

for −m ≤ k ≤ m − 1. For example, if m = 1, the set R1 is one of the
four intersections Vj ∩Hk. In general, Rm belongs to the intersection of a
vertical and a horizontal strip. These strips are getting thinner and thinner
as m→ +∞, approaching in the limit a vertical and a horizontal segment,
respectively. Such segments obviously intersect at a single point x with
h(x) = ω. Thus, h : Λ → Ω2 is a one-to-one map. It implies that Λ is
nonempty. ✷

Remark:
The map h : Λ → Ω2 is continuous together with its inverse (a homeo-

morphism) if we use the standard metric (1.1) in S ⊂ R
2 and the metric

given by (1.2) in Ω2. ♦
Consider now a point x ∈ Λ and its corresponding sequence ω = h(x),

where h is the map previously constructed. Next, consider a point y = f(x),
that is, the image of x under the horseshoe map f . Since y ∈ Λ by definition,
there is a sequence that corresponds to y : θ = h(y). Is there a relation
between these sequences ω and θ? As one can easily see from (1.3), such a
relation exists and is very simple. Namely,

θk = ωk+1, k ∈ Z,

since fk(f(x)) = fk+1(x). In other words, the sequence θ can be obtained
from the sequence ω by the shift map σ, defined in Example 1.8:

θ = σ(ω).

Therefore, the restriction of f to its invariant set Λ ⊂ R
2 is equivalent to

the shift map σ on the set of sequences Ω2. Let us formulate this result as
the following short lemma.

Lemma 1.2 h(f(x)) = σ(h(x)), for all x ∈ Λ.

We can write an even shorter one:

f |Λ = h−1 ◦ σ ◦ h.
Combining Lemmas 1.1 and 1.2 with obvious properties of the shift dy-

namics on Ω2, we get a theorem giving a rather complete description of the
behavior of the horseshoe map.

Theorem 1.1 (Smale [1963]) The horseshoe map f has a closed invari-
ant set Λ that contains a countable set of periodic orbits of arbitrarily long
period, and an uncountable set of nonperiodic orbits, among which there
are orbits passing arbitrarily close to any point of Λ. ✷
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The dynamics on Λ have certain features of “random motion.” Indeed,
for any sequence of two symbols we generate “randomly,” thus prescribing
the phase point to visit the horizontal strips H1 and H2 in a certain order,
there is an orbit showing this feature among those composing Λ.

The next important feature of the horseshoe example is that we can
slightly perturb the constructed map f without qualitative changes to its
dynamics. Clearly, Smale’s construction is based on a sufficiently strong
contraction/expansion, combined with a folding. Thus, a (smooth) pertur-
bation f̃ will have similar vertical and horizontal strips, which are no longer
rectangles but curvilinear regions. However, provided the perturbation is
sufficiently small (see the next chapter for precise definitions), these strips
will shrink to curves that deviate only slightly from vertical and horizon-
tal lines. Thus, the construction can be carried through verbatim, and the
perturbed map f̃ will have an invariant set Λ̃ on which the dynamics are
completely described by the shift map σ on the sequence space Ω2. As we
will discuss in Chapter 2, this is an example of structurally stable behavior.

Remark:
One can precisely specify the contraction/expansion properties required

by the horseshoe map in terms of expanding and contracting cones of the
Jacobian matrix fx (see the literature cited in the bibliographical notes in
Appendix 2 to this chapter). ♦

1.3.3 Stability of invariant sets
To represent an observable asymptotic state of a dynamical system, an
invariant set S0 must be stable; in other words, it should “attract” nearby
orbits. Suppose we have a dynamical system {T,X, ϕt} with a complete
metric state space X. Let S0 be a closed invariant set.

Definition 1.8 An invariant set S0 is called stable if

(i) for any sufficiently small neighborhood U ⊃ S0 there exists a neigh-
borhood V ⊃ S0 such that ϕtx ∈ U for all x ∈ V and all t > 0;

(ii) there exists a neighborhood U0 ⊃ S0 such that ϕtx → S0 for all
x ∈ U0, as t→ +∞.

If S0 is an equilibrium or a cycle, this definition turns into the standard
definition of stable equilibria or cycles. Property (i) of the definition is called
Lyapunov stability. If a set S0 is Lyapunov stable, nearby orbits do not leave
its neighborhood. Property (ii) is sometimes called asymptotic stability.
There are invariant sets that are Lyapunov stable but not asymptotically
stable (see Figure 1.10(a)). In contrast, there are invariant sets that are
attracting but not Lyapunov stable, since some orbits starting near S0
eventually approach S0, but only after an excursion outside a small but
fixed neighborhood of this set (see Figure 1.10(b)).
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FIGURE 1.10. (a) Lyapunov versus (b) asymptotic stability.

If x0 is a fixed point of a finite-dimensional, smooth, discrete-time dy-
namical system, then sufficient conditions for its stability can be formulated
in terms of the Jacobian matrix evaluated at x0.

Theorem 1.2 Consider a discrete-time dynamical system

x �→ f(x), x ∈ R
n,

where f is a smooth map. Suppose it has a fixed point x0, namely f(x0) =
x0, and denote by A the Jacobian matrix of f(x) evaluated at x0, A =
fx(x0). Then the fixed point is stable if all eigenvalues µ1, µ2, . . . , µn of A
satisfy |µ| < 1. ✷

The eigenvalues of a fixed point are usually called multipliers. In the
linear case the theorem is obvious from the Jordan normal form. Theorem
1.2, being applied to the N0th iterate fN0 of the map f at any point of
the periodic orbit, also gives a sufficient condition for the stability of an
N0-cycle.

Another important case where we can establish the stability of a fixed
point of a discrete-time dynamical system is provided by the following
theorem.

Theorem 1.3 (Contraction Mapping Principle) Let X be a complete
metric space with distance defined by ρ. Assume that there is a map f : X →
X that is continuous and that satisfies, for all x, y ∈ X,

ρ(f(x), f(y)) ≤ λρ(x, y),

with some 0 < λ < 1. Then the discrete-time dynamical system {Z+, X, f
k}

has a stable fixed point x0 ∈ X. Moreover, fk(x) → x0 as k → +∞, starting
from any point x ∈ X. ✷

The proof of this fundamental theorem can be found in any text on math-
ematical analysis or differential equations. Notice that there is no restric-
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tion on the dimension of the space X: It can be, for example, an infinite-
dimensional function space. Another important difference from Theorem
1.2 is that Theorem 1.3 guarantees the existence and uniqueness of the
fixed point x0, whereas this has to be assumed in Theorem 1.2. Actually,
the map f from Theorem 1.2 is a contraction near x0, provided an ap-
propriate metric (norm) in R

n is introduced. The Contraction Mapping
Principle is a powerful tool: Using this principle, we can prove the Implicit
Function Theorem, the Inverse Function Theorem, as well as Theorem 1.4
ahead. We will apply the Contraction Mapping Principle in Chapter 4 to
prove the existence, uniqueness, and stability of a closed invariant curve
that appears under parameter variation from a fixed point of a generic pla-
nar map. Notice also that Theorem 1.3 gives global asymptotic stability:
Any orbit of {Z+, X, f

k} converges to x0.
Finally, let us point out that the invariant set Λ of the horseshoe map is

not stable. However, there are similar invariant fractal sets that are stable.
Such objects are called strange attractors.

1.4 Differential equations and dynamical systems

The most common way to define a continuous-time dynamical system is by
differential equations. Suppose that the state space of a system is X = R

n

with coordinates (x1, x2, . . . , xn). If the system is defined on a manifold,
these can be considered as local coordinates on it. Very often the law of
evolution of the system is given implicitly, in terms of the velocities ẋi as
functions of the coordinates (x1, x2, . . . , xn):

ẋi = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n,

or in the vector form
ẋ = f(x), (1.4)

where the vector-valued function f : R
n → R

n is supposed to be sufficiently
differentiable (smooth). The function in the right-hand side of (1.4) is re-
ferred to as a vector field, since it assigns a vector f(x) to each point x.
Equation (1.4) represents a system of n autonomous ordinary differential
equations, ODEs for short. Let us revisit some of the examples introduced
earlier by presenting differential equations governing the evolution of the
corresponding systems.

Example 1.1 (revisited) The dynamics of an ideal pendulum are de-
scribed by Newton’s second law,

ϕ̈ = −k2 sinϕ,

with
k2 =

g

l
,
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where l is the pendulum length, and g is the gravity acceleration constant.
If we introduce ψ = ϕ̇, so that (ϕ,ψ) represents a point in the state space
X = S

1 × R
1, the above differential equation can be rewritten in the form

of equation (1.4): {
ϕ̇ = ψ,

ψ̇ = −k2 sinϕ.
(1.5)

Here

x =
(

ϕ
ψ

)
,

while

f

(
ϕ
ψ

)
=

(
ψ

−k2 sinϕ

)
. ✸

Example 1.2 (revisited) The behavior of an isolated energy-conserving
mechanical system with s degrees of freedom is determined by 2s Hamilto-
nian equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (1.6)

for i = 1, 2, . . . , s. Here the scalar function H = H(q, p) is the Hamilton
function. The equations of motion of the pendulum (1.5) are Hamiltonian
equations with (q, p) = (ϕ,ψ) and

H(ϕ,ψ) =
ψ2

2
+ k2 cosϕ. ✸

Example 1.3 (revisited) The behavior of a quantum system with two
states having different energies can be described between “observations”
by the Heisenberg equation,

i�
dψ

dt
= Hψ,

where i2 = −1,

ψ =
(

a1
a2

)
, ai ∈ C

1.

The symmetric real matrix

H =
(

E0 −A
−A E0

)
, E0, A > 0,

is the Hamiltonian matrix of the system, and � is Plank’s constant divided
by 2π. The Heisenberg equation can be written as the following system of
two linear complex equations for the amplitudes ȧ1 = 1

i� (E0a1 −Aa2),

ȧ2 = 1
i� (−Aa1 + E0a2). ✸

(1.7)



1.4 Differential equations and dynamical systems 19

where l is the pendulum length, and g is the gravity acceleration constant.
If we introduce ψ = ϕ̇, so that (ϕ,ψ) represents a point in the state space
X = S

1 × R
1, the above differential equation can be rewritten in the form

of equation (1.4): {
ϕ̇ = ψ,

ψ̇ = −k2 sinϕ.
(1.5)

Here

x =
(

ϕ
ψ

)
,

while

f

(
ϕ
ψ

)
=

(
ψ

−k2 sinϕ

)
. ✸

Example 1.2 (revisited) The behavior of an isolated energy-conserving
mechanical system with s degrees of freedom is determined by 2s Hamilto-
nian equations:

q̇i =
∂H

∂pi
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Example 1.4 (revisited) As an example of a chemical system, let us
consider the Brusselator [Lefever & Prigogine 1968]. This hypothetical sys-
tem is composed of substances that react through the following irreversible
stages:

A
k1−→ X

B + X
k2−→ Y + D

2X + Y
k3−→ 3X

X
k4−→ E.

Here capital letters denote reagents, while the constants ki over the arrows
indicate the corresponding reaction rates. The substances D and E do not
re-enter the reaction, while A and B are assumed to remain constant. Thus,
the law of mass action gives the following system of two nonlinear equations
for the concentrations [X] and [Y ]:

d[X]
dt

= k1[A]− k2[B][X]− k4[X] + k3[X]2[Y ],

d[Y ]
dt

= k2[B][X]− k3[X]2[Y ].

Linear scaling of the variables and time yields the Brusselator equations,{
ẋ = a− (b + 1)x + x2y,
ẏ = bx− x2y.

✸ (1.8)

Example 1.5 (revisited) One of the earliest models of ecosystems was
the system of two nonlinear differential equations proposed by Volterra
[1931]: {

Ṅ1 = αN1 − βN1N2,

Ṅ2 = −γN2 + δN1N2.
(1.9)

Here N1 and N2 are the numbers of prey and predators, respectively, in an
ecological community, α is the prey growth rate, γ is the predator mortality,
while β and δ describe the predators’ efficiency of consumption of the prey.
✸

Under very general conditions, solutions of ODEs define smooth conti-
nuous-time dynamical systems. Few types of differential equations can be
solved analytically (in terms of elementary functions). However, for smooth
right-hand sides, the solutions are guaranteed to exist according to the
following theorem. This theorem can be found in any textbook on ordinary
differential equations. We formulate it without proof.

Theorem 1.4 (Existence, uniqueness, and smooth dependence)
Consider a system of ordinary differential equations

ẋ = f(x), x ∈ R
n,
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where f : R
n → R

n is smooth in an open region U ⊂ R
n. Then there is a

unique function x = x(t, x0), x : R
1 × R

n → R
n, that is smooth in (t, x),

and satisfies, for each x0 ∈ U , the following conditions:

(i) x(0, x0) = x0;
(ii) there is an interval J = (−δ1, δ2), where δ1,2 = δ1,2(x0) > 0, such

that, for all t ∈ J ,
y(t) = x(t, x0) ∈ U,

and
ẏ(t) = f(y(t)). ✷

The degree of smoothness of x(t, x0) with respect to x0 in Theorem 1.4
is the same as that of f as a function of x. The function x = x(t, x0),
considered as a function of time t, is called a solution starting at x0. It
defines, for each x0 ∈ U , two objects: a solution curve

Cr(x0) = {(t, x) : x = x(t, x0), t ∈ J } ⊂ R
1 × R

n

and an orbit, which is the projection of Cr(x0) onto the state space,

Or(x0) = {x : x = x(t, x0), t ∈ J } ⊂ R
n

(see Figure 1.11). Both curves are parametrized by time t and oriented by
the direction of time advance. A nonzero vector f(x0) is tangent to the
orbit Or(x0) at x0. There is a unique orbit passing through a point x0 ∈ U .

Under the conditions of the theorem, the orbit either leaves U at t = −δ1
(and/or t = δ2), or stays in U forever; in the latter case, we can take
J = (−∞,+∞).

Now we can define the evolution operator ϕt : R
n → R

n by the formula

ϕtx0 = x(t, x0),

which assigns to x0 a point on the orbit through x0 that is passed t time
units later. Obviously, {R1,Rn, ϕt} is a continuous-time dynamical system
(check!). This system is invertible. Each evolution operator ϕt is defined for
x ∈ U and t ∈ J , where J depends on x0 and is smooth in x. In practice,
the evolution operator ϕt corresponding to a smooth system of ODEs can
be found numerically on fixed time intervals to within desired accuracy.
One of the standard ODE solvers can be used to accomplish this.

One of the major tasks of dynamical systems theory is to analyze the
behavior of a dynamical system defined by ODEs. Of course, one might
try to solve this problem by “brute force,” merely computing many orbits
numerically (by “simulations”). However, the most useful aspect of the
theory is that we can predict some features of the phase portrait of a system
defined by ODEs without actually solving the system. The simplest example
of such information is the number and positions of equilibria. Indeed, the
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One of the major tasks of dynamical systems theory is to analyze the
behavior of a dynamical system defined by ODEs. Of course, one might
try to solve this problem by “brute force,” merely computing many orbits
numerically (by “simulations”). However, the most useful aspect of the
theory is that we can predict some features of the phase portrait of a system
defined by ODEs without actually solving the system. The simplest example
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equilibria of a system defined by (1.4) are zeros of the vector field given by
its right-hand side:

f(x) = 0. (1.10)

Clearly, if f(x0) = 0, then ϕtx0 = x0 for all t ∈ R
1. The stability of an

equilibrium can also be detected without solving the system. For example,
sufficient conditions for an equilibrium x0 to be stable are provided by the
following classical theorem.

Theorem 1.5 (Lyapunov [1892]) Consider a dynamical system defined
by

ẋ = f(x), x ∈ R
n,

where f is smooth. Suppose that it has an equilibrium x0 (i.e., f(x0) = 0),
and denote by A the Jacobian matrix of f(x) evaluated at the equilibrium,
A = fx(x0). Then x0 is stable if all eigenvalues λ1, λ2, . . . , λn of A satisfy
Re λ < 0. ✷

Recall that the eigenvalues are roots of the characteristic equation

det(A− λI) = 0,

where I is the n× n identity matrix.
The theorem can easily be proved for a linear system

ẋ = Ax, x ∈ R
n,

by its explicit solution in a basis where A has Jordan normal form, as well
as for a general nonlinear system by constructing a Lyapunov function L(x)
near the equilibrium. More precisely, by a shift of coordinates, one can place
the equilibrium at the origin, x0 = 0, and find a certain quadratic form L(x)
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whose level surfaces L(x) = L0 surround the origin and are such that the
vector field points strictly inside each level surface, sufficiently close to the
equilibrium x0 (see Figure 1.12). Actually, the Lyapunov function L(x) is
the same for both linear and nonlinear systems and is fully determined by
the Jacobian matrix A. The details can be found in any standard text on
differential equations (see the bibliographical notes in Appendix 2). Note
also that the theorem can also be derived from Theorem 1.2 (see Exercise
7).

Unfortunately, in general it is impossible to tell by looking at the right-
hand side of (1.4), whether this system has cycles (periodic solutions).
Later on in the book we will formulate some efficient methods to prove
the appearance of cycles under small perturbation of the system (e.g., by
variation of parameters on which the system depends).

If the system has a smooth invariant manifold M , then its defining vector
field f(x) is tangent to M at any point x ∈ M , where f(x) = 0. For an
(n− 1)-dimensional smooth manifold M ⊂ R

n, which is locally defined by
g(x) = 0 for some scalar function g : R

n → R
1, the invariance means

〈∇g(x), f(x)〉 = 0.

Here ∇g(x) denotes the gradient

∇g(x) =
(
∂g(x)
∂x1

,
∂g(x)
∂x2

, . . . ,
∂g(x)
∂xn

)T

,

which is orthogonal to M at x.

1.5 Poincaré maps

There are many cases where discrete-time dynamical systems (maps) nat-
urally appear in the study of continuous-time dynamical systems defined
by differential equations. The introduction of such maps allows us to apply
the results concerning maps to differential equations. This is particularly
efficient if the resulting map is defined in a lower-dimensional space than
the original system. We will call maps arising from ODEs Poincaré maps.
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1.5.1 Time-shift maps
The simplest way to extract a discrete-time dynamical system from a conti-
nuous-time system {R1, X, ϕt} is to fix some T0 > 0 and consider a system
on X that is generated by iteration of the map f = ϕT0 . This map is called
a T0-shift map along orbits of {R1, X, ϕt}. Any invariant set of {R1, X, ϕt}
is an invariant set of the map f . For example, isolated fixed points of f are
located at those positions where {R1, X, ϕt} has isolated equilibria.

In this context, the inverse problem is more interesting: Is it possible to
construct a system of ODEs whose T0-shift map ϕT0 reproduces a given
smooth and invertible map f? If we require the discrete-time system to have
the same dimension as the continuous-time one, the answer is negative. The
simplest counterexample is provided by the linear scalar map

x �→ f(x) = −1
2
x, x ∈ R

1. (1.11)

The map in (1.11) has a single fixed point x0 = 0 that is stable. Clearly,
there is no scalar ODE

ẋ = F (x), x ∈ R
1, (1.12)

such that its evolution operator ϕT0 = f . Indeed, x0 = 0 must be an
equilibrium of (1.12), thus none of its orbits can “jump” over the origin
like those of (1.11). We will return to this inverse problem in Chapter 9,
where we explicitly construct ODE systems approximating certain maps.

0 x(     ,    )

t = 0

T 0t = 

x(   )f

T

(   ,         )

t

x

0

FIGURE 1.13. Suspension flow.

Remark:
If we allow for ODEs on manifolds, the inverse problem can always be

solved. Specifically, consider a map f : R
n → R

n that is assumed to be
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smooth, together with its inverse. Take a layer

{(t, x) ∈ R
1 × R

n : t ∈ [0, T0]}
(see Figure 1.13) and identify (“glue”) a point (T0, x) on the “top” face
of X with the point (0, f(x)) on the “bottom” face. Thus, the constructed
space X is an (n+1)-dimensional manifold with coordinates (t mod T0, x).
Specify now an autonomous system of ODEs on this manifold, called the
suspension, by the equations {

ṫ = 1,
ẋ = 0. (1.13)

The orbits of (1.13) (viewed as subsets of R
1×R

n) are straight lines inside
the layer interrupted by “jumps” from its “top” face to the “bottom” face.
Obviously, the T0-shift along orbits of (1.13) ϕT0 coincides on its invariant
hyperplane {t = 0} with the map f .

Let k > 0 satisfy the equation ekT0 = 2. The suspension system corre-
sponding to the map (1.11) has the same orbit structure as the system{

ṫ = 1,
ẋ = −kx,

defined on an (infinitely wide) Möbius strip obtained by identifying the
points (T0, x) and (0,−x) (see Figure 1.14). In both systems, x = 0 cor-
responds to a stable limit cycle of period T0 with the multiplier µ = − 1

2 .
♦

1.5.2 Poincaré map and stability of cycles
Consider a continuous-time dynamical system defined by

ẋ = f(x), x ∈ R
n, (1.14)

x

t

x

(  )

(  )

0t = T

0t = 
f  x

f  x

FIGURE 1.14. Stable limit cycle on the Möbius strip.
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with smooth f . Assume, that (1.14) has a periodic orbit L0. Take a point
x0 ∈ L0 and introduce a cross-section Σ to the cycle at this point (see
Figure 1.15). The cross-section Σ is a smooth hypersurface of dimension
n−1, intersecting L0 at a nonzero angle. Since the dimension of Σ is one less
than the dimension of the state space, we say that the hypersurface Σ is of
“codimension” one, codim Σ = 1. Suppose that Σ is defined near the point
x0 by the zero-level set of a smooth scalar function g : R

n → R
1, g(x0) = 0,

Σ = {x ∈ R
n : g(x) = 0}.

A nonzero intersection angle (“transversality”) means that the gradient

∇g(x) =
(
∂g(x)
∂x1

,
∂g(x)
∂x2

, . . . ,
∂g(x)
∂xn

)T

is not orthogonal to L0 at x0, that is,

〈∇g(x0), f(x0)〉 = 0,

where 〈·, ·〉 is the standard scalar product in R
n. The simplest choice of Σ

x 0
x(  )P

0

x

L

Σ

FIGURE 1.15. The Poincaré map associated with a cycle.

is a hyperplane orthogonal to the cycle L0 at x0. Such a cross-section is
obviously given by the zero-level set of the linear function

g(x) = 〈f(x0), x− x0〉.
Consider now orbits of (1.14) near the cycle L0. The cycle itself is an

orbit that starts at a point on Σ and returns to Σ at the same point
(x0 ∈ Σ). Since the solutions of (1.8) depend smoothly on their initial
points (Theorem 1.4), an orbit starting at a point x ∈ Σ sufficiently close
to x0 also returns to Σ at some point x̃ ∈ Σ near x0. Moreover, nearby
orbits will also intersect Σ transversally. Thus, a map P : Σ → Σ,

x �→ x̃ = P (x),

is constructed.
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FIGURE 1.15. The Poincaré map associated with a cycle.

is a hyperplane orthogonal to the cycle L0 at x0. Such a cross-section is
obviously given by the zero-level set of the linear function

g(x) = 〈f(x0), x− x0〉.
Consider now orbits of (1.14) near the cycle L0. The cycle itself is an

orbit that starts at a point on Σ and returns to Σ at the same point
(x0 ∈ Σ). Since the solutions of (1.8) depend smoothly on their initial
points (Theorem 1.4), an orbit starting at a point x ∈ Σ sufficiently close
to x0 also returns to Σ at some point x̃ ∈ Σ near x0. Moreover, nearby
orbits will also intersect Σ transversally. Thus, a map P : Σ → Σ,

x �→ x̃ = P (x),

is constructed.



1.5 Poincaré maps 27

Definition 1.9 The map P is called a Poincaré map associated with the
cycle L0.

The Poincaré map P is locally defined, is as smooth as the right-hand
side of (1.14), and is invertible near x0. The invertibility follows from
the invertibility of the dynamical system defined by (1.14). The inverse
map P−1 : Σ → Σ can be constructed by extending the orbits crossing Σ
backward in time until reaching their previous intersection with the cross-
section. The intersection point x0 is a fixed point of the Poincaré map:
P (x0) = x0.

Let us introduce local coordinates ξ = (ξ1, ξ2, . . . , ξn−1) on Σ such that
ξ = 0 corresponds to x0. Then the Poincaré map will be characterized by a
locally defined map P : R

n−1 → R
n−1, which transforms ξ corresponding

to x into ξ̃ corresponding to x̃,

P (ξ) = ξ̃.

The origin ξ = 0 of R
n−1 is a fixed point of the map P : P (0) = 0.

The stability of the cycle L0 is equivalent to the stability of the fixed point
ξ0 = 0 of the Poincaré map. Thus, the cycle is stable if all eigenvalues
(multipliers) µ1, µ2, . . . , µn−1 of the (n − 1) × (n − 1) Jacobian matrix of
P ,

A =
dP

dξ

∣∣∣∣
ξ=0

,

are located inside the unit circle |µ| = 1 (see Theorem 1.2).
One may ask whether the multipliers depend on the choice of the point

x0 on L0, the cross-section Σ, or the coordinates ξ on it. If this were the
case, determining stability using multipliers would be confusing or even
impossible.

Lemma 1.3 The multipliers µ1, µ2, . . . , µn−1 of the Jacobian matrix A of
the Poincaré map P associated with a cycle L0 are independent of the point
x0 on L0, the cross-section Σ, and local coordinates on it.

Proof:
Let Σ1 and Σ2 be two cross-sections to the same cycle L0 at points

x1 and x2, respectively (see Figure 1.16, where the planar case is pre-
sented for simplicity). We allow the points x1,2 to coincide, and we let
the cross-sections Σ1,2 represent identical surfaces in R

n that differ only in
parametrization. Denote by P1 : Σ1 → Σ1 and P2 : Σ2 → Σ2 corresponding
Poincaré maps. Let ξ = (ξ1, ξ2, . . . , ξn−1) be coordinates on Σ1, and let
η = (η1, η2, . . . , ηn−1) be coordinates on Σ2, such that ξ = 0 corresponds
to x1 while η = 0 gives x2. Finally, denote by A1 and A2 the associated
Jacobian matrices of P1 and P2, respectively.

Due to the same arguments as those we used to construct the Poincaré
map, there exists a locally defined, smooth, and invertible correspondence
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map Q : Σ1 → Σ2 along orbits of (1.14):

η = Q(ξ).

Obviously, we have
P2 ◦Q = Q ◦ P1,

or, in coordinates,
P2(Q(ξ)) = Q(P1(ξ)),

for all sufficiently small ‖ξ‖ (see Figure 1.15). Since Q is invertible, we
obtain the following relation between P1 and P2:

P1 = Q−1 ◦ P2 ◦Q.
Differentiating this equation with respect to ξ, and using the chain rule,
we find

dP1

dξ
=
dQ−1

dη

dP2

dη

dQ

dξ
.

Evaluating the result at ξ = 0 gives the matrix equation

A1 = B−1A2B,

where

B =
dQ

dξ

∣∣∣∣
ξ=0

is nonsingular (i.e., detB = 0). Thus, the characteristic equations for A1
and A2 coincide, as do the multipliers. Indeed,

det(A1 − µI) = det(B−1) det(A2 − µI) det(B) = det(A2 − µI),

since the determinant of the matrix product is equal to the product of the
the determinants of the matrices involved, and det(B−1) det(B) = 1. ✷

1

(   )ξ1P  (   )η2P  

Σ

2

2Σ

ηξ

Q

x

L 0

x1

FIGURE 1.16. Two cross-sections to the cycle L0.
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According to Lemma 1.3, we can use any cross-section Σ to compute the
multipliers of the cycle: The result will be the same.

The next problem to be addressed is the relationship between the multi-
pliers of a cycle and the differential equations (1.14) defining the dynamical
system that has this cycle. Let x0(t) denote a periodic solution of (1.14),
x0(t + T0) = x0(t), corresponding to a cycle L0. Represent a solution of
(1.14) in the form

x(t) = x0(t) + u(t),

where u(t) is a deviation from the periodic solution. Then,

u̇(t) = ẋ(t)− ẋ0(t) = f(x0(t) + u(t))− f(x0(t)) = A(t)u(t) + O(‖u(t)‖2).

Truncating O(‖u‖2) terms results in the linear T0-periodic system

u̇ = A(t)u, u ∈ R
n, (1.15)

where A(t) = fx(x0(t)), A(t + T0) = A(t).

Definition 1.10 System (1.15) is called the variational equation about the
cycle L0.

The variational equation is the main (linear) part of the system governing
the evolution of perturbations near the cycle. Naturally, the stability of the
cycle depends on the properties of the variational equation.

Definition 1.11 The time-dependent matrix M(t) is called the fundamen-
tal matrix solution of (1.14) if it satisfies

Ṁ = A(t)M,

with the initial condition M(0) = I, the identity n× n matrix.

Any solution u(t) to (1.15) satisfies

u(T0) = M(T0)u(0)

(prove!). The matrix M(T0) is called a monodromy matrix of the cycle
L0. The following Liouville formula expresses the determinant of the mon-
odromy matrix in terms of the matrix A(t):

detM(T0) = exp

{∫ T0

0
tr A(t) dt

}
. (1.16)

Theorem 1.6 The monodromy matrix M(T0) has eigenvalues

1, µ1, µ2, . . . , µn−1,

where µi are the multipliers of the Poincaré map associated with the cycle
L0.
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Sketch of the proof:
Let ϕt be the evolution operator (flow) defined by system (1.14) near the

cycle L0. Consider the map

ϕT0 : R
n → R

n.

Clearly, ϕT0x0 = x0, where x0 is an initial point on the cycle, which we
assume to be located at the origin, x0 = 0. The map is smooth, and its
Jacobian matrix at x0 coincides with the monodromy matrix:

∂ϕT0x

∂x

∣∣∣∣
x=x0

= M(T0).

We claim that the matrix M(T0) has an eigenvalue µ0 = 1. Indeed, v(t) =
ẋ0(t) is a solution to (1.15). Therefore, q = v(0) = f(x0) is transformed by
M(T0) into itself:

M(T0)q = q.

There are no generalized eigenvectors associated to q. Thus, the mon-
odromy matrix M(T0) has a one-dimensional invariant subspace spanned
by q and a complementary (n− 1)-dimensional subspace Σ : M(T0)Σ = Σ.
Take the subspace Σ as a cross-section to the cycle at x0 = 0. One can
see that the restriction of the linear transformation defined by M(T0) to
this invariant subspace Σ is the Jacobian matrix of the Poincaré map P
defined by system (1.14) on Σ. Therefore, their eigenvalues µ1, µ2, . . . , µn−1
coincide. ✷

According to (1.16), the product of all eigenvalues of M(T0) can be ex-
pressed as

µ1µ2 · · ·µn−1 = exp

{∫ T0

0
(div f)(x0(t)) dt

}
, (1.17)

where, by definition, the divergence of a vector field f(x) is given by

(div f)(x) =
n∑

i=1

∂fi(x)
∂xi

.

Thus, the product of all multipliers of any cycle is positive. Notice that
in the planar case (n = 2) formula (1.17) allows us to compute the only
multiplier µ1, provided the periodic solution corresponding to the cycle is
known explicitly. However, this is mainly a theoretical tool, since periodic
solutions of nonlinear systems are rarely known analytically.

1.5.3 Poincaré map for periodically forced systems
In several applications the behavior of a system subjected to an external
periodic forcing is described by time-periodic differential equations

ẋ = f(t, x), (t, x) ∈ R
1 × R

n, (1.18)
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where f(t + T0, x) = f(t, x). System (1.18) defines an autonomous system
on the cylindrical manifold X = S

1 ×R
n, with coordinates (t(mod T0), x),

namely {
ṫ = 1,
ẋ = f(t, x). (1.19)

In this space X, take the n-dimensional cross-section Σ = {(x, t) ∈ X : t =
0}. We can use xT = (x1, x2, . . . , xn) as coordinates on Σ. Clearly, all orbits
of (1.19) intersect Σ transversally. Assuming that the solution x(t, x0) of
(1.19) exists on the interval t ∈ [0, T0], we can introduce the Poincaré map

x0 �→ P (x0) = x(T0, x0).

In other words, we have to take an initial point x0 and integrate system
(1.18) over its period T0 to obtain P (x0). By this construction, the discrete-
time dynamical system {Z,Rn, P k} is defined. Fixed points of P obviously
correspond to T0-periodic solutions of (1.18). An N0-cycle of P represents
an N0T0-periodic solution (subharmonic) of (1.18). The stability of these
periodic solutions is clearly determined by that of the corresponding fixed
points and cycles. More complicated solutions of (1.18) can also be studied
via the Poincaré map. In Chapter 9 we will analyze in detail a model of
a periodically (seasonally) forced predator-prey system exhibiting various
subharmonic and chaotic solutions.

1.6 Exercises

(1) (Symbolic dynamics and the Smale horseshoe revisited)
(a) Compute the number N(k) of period-k cycles in the symbolic dy-

namics {Z,Ω2, σ
k}.

(b) Explain how to find the coordinates of the two fixed points of the
horseshoe map f in S. Prove that each point has one multiplier inside and
one multiplier outside the unit circle |µ| = 1.

(2) (Hamiltonian systems)
(a) Prove that the Hamilton function is constant along orbits of a Hamil-

tonian system: Ḣ = 0.
(b) Prove that the equilibrium (ϕ,ψ) = (0, 0) of a pendulum described

by (1.5) is Lyapunov stable. (Hint: System (1.5) is Hamiltonian with closed
level curves H(ϕ,ψ) = const near (0, 0).) Is this equilibrium asymptotically
stable?

(3) (Quantum oscillations)
(a) Integrate the linear system (1.7), describing the simplest quantum

system with two states, and show that the probability pi = |ai|2 of finding
the system in a given state oscillates periodically in time.
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(b) How does p1 + p2 behave?

(4) (Brusselator revisited)
(a) Derive the Brusselator system (1.8) from the system written in terms

of the concentrations [X], [Y ].
(b) Compute an equilibrium position (x0, y0) and find a sufficient condi-

tion on the parameters (a, b) for it to be stable.

(5) (Volterra system revisited)
(a) Show that (1.9) can be reduced by a linear scaling of variables and

time to the following system with only one parameter γ:{
ẋ = x− xy,
ẏ = −γy + xy.

(b) Find all equilibria of the scaled system.
(c) Verify that the orbits of the scaled system in the positive quadrant

{(x, y) : x, y > 0} coincide with those of the Hamiltonian system

ẋ =
1
y
− 1,

ẏ = −γ
x

+ 1.

(Hint: Vector fields defining these two systems differ by the factor µ(x, y) =
xy, which is positive in the first quadrant.) Find the Hamilton function.

(d) Taking into account steps (a) to (c), prove that all nonequilibrium
orbits of the Volterra system in the positive quadrant are closed, thus de-
scribing periodic oscillations of the numbers of prey and predators.

(6) (Explicit Poincaré map)
(a) Show that for α > 0 the planar system in polar coordinates{

ρ̇ = ρ(α− ρ2),
ϕ̇ = 1,

has the explicit solution

ρ(t) =
(

1
α

+
(

1
ρ2
0
− 1
α

)
e−2αt

)−1/2

, ϕ(t) = ϕ0 + t.

(b) Draw the phase portrait of the system and prove that it has a unique
limit cycle for each α > 0.

(c) Compute the multiplier µ1 of the limit cycle:
(i) by explicit construction of the Poincaré map ρ �→ P (ρ) using the

solution above and evaluating its derivative with respect to ρ at the fixed
point ρ0 =

√
α (Hint: See Wiggins [1990, pp. 66-67].);
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(ii) using formula (1.17), expressing µ1 in terms of the integral of the
divergence over the cycle. (Hint: Use polar coordinates; the divergence is
invariant.)

(7) (Lyapunov’s theorem) Prove Theorem 1.5 using Theorem 1.2.
(a) Write the system near the equilibrium as

ẋ = Ax + F (x),

where F (x) = O(‖x‖2) is a smooth nonlinear function.
(b) Using the variation-of-constants formula for the evolution operator

ϕt,

ϕtx = eAtx +
∫ t

0
eA(t−τ)F (ϕτx) dτ,

show that the unit-time shift along the orbits has the expansion

ϕ1x = Bx + O(‖x‖2),

where B = eA.
(c) Conclude the proof, taking into account that µk = eλk , where µk and

λk are the eigenvalues of the matrices B and A, respectively.

1.7 Appendix 1: Infinite-dimensional dynamical
systems defined by reaction-diffusion
equations

As we have seen in Examples 1.4 and 1.5, the state of a spatially distributed
system is characterized by a function from a function space X. The dimen-
sion of such spaces is infinite. A function u ∈ X satisfies certain boundary
and smoothness conditions, while its evolution is usually determined by a
system of equations with partial derivatives (PDEs). In this appendix we
briefly discuss how a particular type of such equations, namely reaction-
diffusion systems, defines infinite-dimensional dynamical systems.

The state of a chemical reactor at time t can be specified by defining
a vector function c(x, t) = (c1(x, t), c2(x, t), . . . , cn(x, t))T , where the ci
are concentrations of reacting substances near the point x in the reactor
domain Ω ⊂ R

m. Here m = 1, 2, 3, depending on the geometry of the
reactor, and Ω is assumed to be closed and bounded by a smooth boundary
∂Ω. The concentrations ci(x, t) satisfy certain problem-dependent boundary
conditions. For example, if the concentrations of all the reagents are kept
constant at the boundary, we have

c(x, t) = c0, x ∈ ∂Ω.
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Defining a deviation from the boundary value, s(x, t) = c(x, t)− c0, we can
reduce to the case of zero Dirichlet boundary conditions:

s(x, t) = 0, x ∈ ∂Ω.

If the reagents cannot penetrate the reactor boundary, zero Neumann (zero
flux) conditions are applicable:

∂c(x, t)
∂n

= 0, x ∈ ∂Ω,

where the left-hand side is the inward-pointing normal derivative at the
boundary.

The evolution of a chemical system can be modeled by a system of
reaction-diffusion equations written in the vector form for u(x, t) (u = s or
c):

∂u(x, t)
∂t

= D(∆u)(x, t) + f(u(x, t)), (A.1)

where f : R
n → R

n is smooth and D is a diagonal diffusion matrix with
positive coefficients, and ∆ is known as the Laplacian,

∆u =
m∑
i=1

∂2u

∂x2
i

.

The first term of the right-hand side of (A.1) describes diffusion of the
reagents, while the second term specifies their local interaction. The func-
tion u(x, t) satisfies one of the boundary conditions listed above, for exam-
ple, the Dirichlet conditions:

u(x, t) = 0, x ∈ ∂Ω. (A.2)

Definition 1.12 A function u = u(x, t), u : Ω×R
1 → R

n, is called a clas-
sical solution to the problem (A.1),(A.2) if it is continuously differentiable,
at least once with respect to t and twice with respect to x, and satisfies
(A.1),(A.2) in the domain of its definition.

For any twice continuously differentiable initial function u0(x),

u0(x) = 0, x ∈ ∂Ω, (A.3)

the problem (A.1),(A.2) has a unique classical solution u(x, t), defined for
x ∈ Ω and t ∈ [0, δ0), where δ0 depends on u0, and such that u(x, 0) =
u0(x). Moreover, this classical solution is actually infinitely many times
differentiable in (x, t) for 0 < t < δ0. The same properties are valid if one
replaces (A.2) by Neumann boundary conditions.

Introduce the space X = C2
0 (Ω,Rn) of all twice continuously differen-

tiable vector functions in Ω satisfying the Dirichlet condition (A.3) at the
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boundary ∂Ω. The preceeding results mean that the reaction-diffusion sys-
tem (A.1),(A.2) defines a continuous-time dynamical system {R1

+, X, ϕ
t},

with the evolution operator

(ϕtu0)(x) = u(x, t), (A.4)

where u(x, t) is the classical solution to (A.1),(A.2) satisfying u(x, 0) =
u0(x). It also defines a dynamical system on X1 = C∞0 (Ω,Rn) composed
of all infinitely continuously differentiable vector functions in Ω satisfying
the Dirichlet condition (A.3) at the boundary ∂Ω.

The notions of equilibria and cycles are, therefore, applicable to the
reaction-diffusion system (A.1). Clearly, equilibria of the system are de-
scribed by time-independent vector functions satisfying

D(∆u)(x) + f(u(x)) = 0 (A.5)

and the corresponding boundary conditions. A trivial, spatially homoge-
neous solutions to (A.5) satisfying (A.2), for example, is an equilibrium of
the local system

u̇ = f(u), u ∈ R
n. (A.6)

Nontrivial, spatially nonhomogeneous solutions to (A.5) are often called
dissipative structures. Spatially homogeneous and nonhomogeneous equi-
libria can be stable or unstable. In the stable case, all (smooth) small
perturbations v(x) of an equilibrium solution decay in time. Cycles (i.e.,
time-periodic solutions of (A.1) satisfying the appropriate boundary con-
ditions) are also possible; they can be stable or unstable. Standing and
rotating waves in reaction-diffusion systems in planar circular domains Ω
are examples of such periodic solutions.

Up to now, the situation seems to be rather simple and is parallel to the
finite-dimensional case. However, one runs into certain difficulties when
trying to introduce a distance in X = C2

0 (Ω,Rn). For example, this space
is incomplete in the “integral norm”

‖u‖2 =
∫

Ω

∑
j=1,2,...,n

|i|≤2

∣∣∣∣ ∂|i|uj(x)
∂xi11 ∂x

i2
2 · · · ∂ximm

∣∣∣∣2 dΩ, (A.7)

where |i| = i1 + i2 + . . . + im. In other words, a Cauchy sequence in this
norm can approach a function that is not twice continuously differentiable
(it may have no derivatives at all) and thus does not belong to X. Since
this property is important in many respects, a method called completion
has been developed that allows us to construct a complete space, given any
normed one. Loosely speaking, we add the limits of all Cauchy sequences to
X. More precisely, we call two Cauchy sequences equivalent if the distance
between their corresponding elements tends to zero. Classes of equivalent
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Cauchy sequences are considered as points of a new space H. The original
norm can be extended to H, thus making it a complete normed space. Such
spaces are called Banach spaces. The space X can then be interpreted as
a subset of H. It is also useful if the obtained space is a Hilbert space,
meaning that the norm in it is generated by a certain scalar product.

Therefore, we can try to use one of the completed spaces H as a new state
space for our reaction-diffusion system. However, since H includes functions
on which the diffusion part of (A.1) is undefined, extra work is required.
One should also take care that the reaction part f(u) of the system defines
a smooth map on H. Without going into details, we merely state that it
is possible to prove the existence of a dynamical system {R1

+, H, ψ
t} such

that ψtu is defined and continuous in u for all u ∈ H and t ∈ [0, δ(u)),
and, if u0 ∈ X ⊂ H, then ψtu0 = ϕtu0, where ϕtu0 is a classical solution
to (A.1),(A.2).

The stability of equilibria and other solutions can be studied in the
space H. If an equilibrium is stable in H, it will also be stable with re-
spect to smooth perturbations. One can derive sufficient conditions for an
equilibrium to be stable in H (or X) in terms of the linear part of the
reaction-diffusion system (A.1). For example, let us formulate sufficient
stability conditions (an analogue of Theorem 1.5) for a trivial (homoge-
neous) equilibrium of a reaction-diffusion system on the interval Ω = [0, π]
with Dirichlet boundary conditions.

Theorem 1.7 Consider a reaction-diffusion system

∂u

∂t
= D

∂2u

∂x2 + f(u), (A.8)

where f is smooth, x ∈ [0, π], with the boundary conditions

u(0) = u(π) = 0. (A.9)

Assume that u0 = 0 is a homogeneous equilibrium, f(0) = 0, and A is
the Jacobian matrix of the corresponding equilibrium of the local system,
A = fu(0). Suppose that the eigenvalues of the n× n matrix

Mk = A− k2D

have negative real parts for all k = 0, 1, 2, . . ..
Then u0 = 0 is a stable equilibrium of the dynamical system {R1

+, H, ψ
t}

generated by the system (A.8), (A.9) in the completion H of the space
C2

0 ([0, π], R
n) in the norm (A.7). ✷

A similar theorem can be proved for the system in Ω ⊂ R
m,m = 2, 3,

with Dirichlet boundary conditions. The only modification is that k2 should
be replaced by κk, where {κk} are all positive numbers for which

(∆vk)(x) = −κkvk(x),

with vk = vk(x) satisfying Dirichlet boundary conditions. The modification
to the Neumann boundary condition case is rather straightforward.
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1.8 Appendix 2: Bibliographical notes

Originally, the term “dynamical system” meant only mechanical systems
whose motion is described by differential equations derived in classical me-
chanics. Basic results on such dynamical systems were obtained by Lya-
punov and Poincaré at the end of the nineteenth century. Their studies
have been continued by Dulac [1923] and Birkhoff [1927], among others.
The books by Nemytskii & Stepanov [1949] and Coddington & Levinson
[1955] contain detailed treatments of the then-known properties of dynam-
ical systems defined by differential equations. Later on it became clear that
this notion is useful for the analysis of various evolutionary processes stud-
ied in different branches of science and described by ODEs, PDEs, or explic-
itly defined iterated maps. The modern period in dynamical system theory
started from the work of Kolmogorov [1957], Smale [1963, 1966, 1967] and
Anosov [1967]. Today, the literature on dynamical systems is huge. We do
not attempt to survey it here, giving only a few remarks in the bibliograph-
ical notes to each chapter.

The horseshoe diffeomorphism proposed by Smale [1963, 1967] is treated
in many books, for example, in Nitecki [1971], Guckenheimer & Holmes
[1983], Wiggins [1990], Arrowsmith & Place [1990]. However, the best pre-
sentation of this and related topics is still due to Moser [1973].

General properties of ordinary differential equations and their relation
to dynamical systems are presented in the cited book by Nemytskii and
Stepanov, and notably in the texts by Pontryagin [1962], Arnold [1973],
and Hirsch & Smale [1974]. The latter three books contain a compre-
hensive analysis of linear differential equations with constant and time-
dependent coefficients. The book by Hartman [1964] treats the relation
between Poincaré maps, multipliers, and stability of limit cycles.

The study of infinite-dimensional dynamical systems has been stimu-
lated by hydro- and aerodynamics and by chemical and nuclear engineering.
Linear infinite-dimensional dynamical systems, known as “continuous (an-
alytical) semigroups” are studied in functional analysis (see, e.g., Hille &
Phillips [1957], Balakrishnan [1976], or the more physically oriented texts
by Richtmyer [1978, 1981]). The theory of nonlinear infinite-dimensional
systems is a rapidly developing field. The reader is addressed to the rele-
vant chapters of the books by Marsden & McCracken [1976], Carr [1981],
and Henry [1981]. Infinite-dimensional dynamical systems also arise natu-
rally in studying differential equations with delays (see Hale [1971], Hale &
Verduyn Lunel [1993], and Diekmann, van Gils, Verduyn Lunel & Walther
[1995]).
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2
Topological Equivalence,
Bifurcations, and Structural
Stability of Dynamical Systems

In this chapter we introduce and discuss the following fundamental notions
that will be used throughout the book: topological equivalence of dynamical
systems and their classification, bifurcations and bifurcation diagrams, and
topological normal forms for bifurcations. The last section is devoted to
the more abstract notion of structural stability. In this chapter we will be
dealing only with dynamical systems in the state space X = R

n.

2.1 Equivalence of dynamical systems

We would like to study general (qualitative) features of the behavior of
dynamical systems, in particular, to classify possible types of their behavior
and compare the behavior of different dynamical systems. The comparison
of any objects is based on an equivalence relation,1 allowing us to define
classes of equivalent objects and to study transitions between these classes.
Thus, we have to specify when we define two dynamical systems as being
“qualitatively similar” or equivalent. Such a definition must meet some
general intuitive criteria. For instance, it is natural to expect that two
equivalent systems have the same number of equilibria and cycles of the
same stability types. The “relative position” of these invariant sets and the

1Recall that a relation between two objects (a ∼ b) is called equivalence if it
is reflexive (a ∼ a), symmetric (a ∼ b implies b ∼ a), and transitive (a ∼ b and
b ∼ c imply a ∼ c).
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shape of their regions of attraction should also be similar for equivalent
systems. In other words, we consider two dynamical systems as equivalent
if their phase portraits are “qualitatively similar,” namely, if one portrait
can be obtained from another by a continuous transformation (see Figure
2.1).

y

y

2

1

x 2

x 1

FIGURE 2.1. Topological equivalence.

Definition 2.1 A dynamical system {T,Rn, ϕt} is called topologically equ-
ivalent to a dynamical system {T,Rn, ψt} if there is a homeomorphism
h : R

n → R
n mapping orbits of the first system onto orbits of the second

system, preserving the direction of time.

A homeomorphism is an invertible map such that both the map and
its inverse are continuous. The definition of the topological equivalence
can be generalized to cover more general cases when the state space is a
complete metric or, in particular, is a Banach space. The definition also
remains meaningful when the state space is a smooth finite-dimensional
manifold in R

n, for example, a two-dimensional torus T
2 or sphere S

2. The
phase portraits of topologically equivalent systems are often also called
topologically equivalent.

The above definition applies to both continuous- and discrete-time sys-
tems. However, in the discrete-time case we can obtain an explicit relation
between the corresponding maps of the equivalent systems. Indeed, let

x �→ f(x), x ∈ R
n, (2.1)

and
y �→ g(y), y ∈ R

n, (2.2)

be two topologically equivalent, discrete-time invertible dynamical systems
(f = ϕ1, g = ψ1 are smooth invertible maps). Consider an orbit of system
(2.1) starting at some point x:

. . . , f−1(x), x, f(x), f2(x), . . .

and an orbit of system (2.2) starting at a point y:

. . . , g−1(y), y, g(y), g2(y), . . . .
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Topological equivalence implies that if x and y are related by the homeo-
morphism h, y = h(x), then the first orbit is mapped onto the second one
by this map h. Symbolically,

x
f−→ f(x)

h ↓ h ↓
y

g−→ g(y).

Therefore, g(y) = h(f(x)) or g(h(x)) = h(f(x)) for all x ∈ R
n, which can

be written as
f(x) = h−1(g(h(x)))

since h is invertible. We can write the last equation in a more compact
form using the symbol of map superposition:

f = h−1 ◦ g ◦ h. (2.3)

Definition 2.2 Two maps f and g satisfying (2.3) for some homeomor-
phism h are called conjugate.

Consequently, topologically equivalent, discrete-time systems are often
called conjugate systems. If both h and h−1 are Ck maps, the maps f and
g are called Ck-conjugate. For k ≥ 1, Ck-conjugate maps (and the corre-
sponding systems) are called smoothly conjugate or diffeomorphic. Two dif-
feomorphic maps (2.1) and (2.2) can be considered as the same map written
in two different coordinate systems with coordinates x and y, while y = h(x)
can be treated as a smooth change of coordinates. Consequently, diffeomor-
phic discrete-time dynamical systems are practically indistinguishable.

Now consider two continuous-time topologically equivalent systems:

ẋ = f(x), x ∈ R
n, (2.4)

and
ẏ = g(y), y ∈ R

n, (2.5)

with smooth right-hand sides. Let ϕt and ψt denote the corresponding
flows. In this case, there is no simple relation between f and g analogous
to formula (2.3). Nevertheless, there are two particular cases of topological
equivalence between (2.4) and (2.5) that can be expressed analytically, as
we now explain.

Suppose that y = h(x) is an invertible map h : R
n → R

n, which is
smooth together with its inverse (h is a diffeomorphism) and such that, for
all x ∈ R

n,
f(x) = M−1(x)g(h(x)), (2.6)

where

M(x) =
dh(x)
dx



2.1 Equivalence of dynamical systems 41

Topological equivalence implies that if x and y are related by the homeo-
morphism h, y = h(x), then the first orbit is mapped onto the second one
by this map h. Symbolically,

x
f−→ f(x)

h ↓ h ↓
y

g−→ g(y).

Therefore, g(y) = h(f(x)) or g(h(x)) = h(f(x)) for all x ∈ R
n, which can

be written as
f(x) = h−1(g(h(x)))

since h is invertible. We can write the last equation in a more compact
form using the symbol of map superposition:

f = h−1 ◦ g ◦ h. (2.3)

Definition 2.2 Two maps f and g satisfying (2.3) for some homeomor-
phism h are called conjugate.

Consequently, topologically equivalent, discrete-time systems are often
called conjugate systems. If both h and h−1 are Ck maps, the maps f and
g are called Ck-conjugate. For k ≥ 1, Ck-conjugate maps (and the corre-
sponding systems) are called smoothly conjugate or diffeomorphic. Two dif-
feomorphic maps (2.1) and (2.2) can be considered as the same map written
in two different coordinate systems with coordinates x and y, while y = h(x)
can be treated as a smooth change of coordinates. Consequently, diffeomor-
phic discrete-time dynamical systems are practically indistinguishable.

Now consider two continuous-time topologically equivalent systems:
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is the Jacobian matrix of h(x) evaluated at the point x. Then, system (2.4)
is topologically equivalent to system (2.5). Indeed, system (2.5) is obtained
from system (2.4) by the smooth change of coordinates y = h(x). Thus, h
maps solutions of (2.4) into solutions of (2.5),

h(ϕtx) = ψth(x),

and can play the role of the homeomorphism in Definition 2.1.

Definition 2.3 Two systems (2.4) and (2.5) satisfying (2.6) for some dif-
feomorphism h are called smoothly equivalent (or diffeomorphic).

Remark:
If the degree of smoothness of h is of interest, one writes: Ck-equivalent

or Ck-diffeomorphic in Definition 2.3. ♦
Two diffeomorphic systems are practically identical and can be viewed

as the same system written using different coordinates. For example, the
eigenvalues of corresponding equilibria are the same. Let x0 and y0 = h(x0)
be such equilibria and let A(x0) and B(y0) denote corresponding Jacobian
matrices. Then, differentiation of (2.6) yields

A(x0) = M−1(x0)B(y0)M(x0).

Therefore, the characteristic polynomials for the matrices A(x0) and B(y0)
coincide. In addition, diffeomorphic limit cycles have the same multipliers
and period (see Exercise 4). This last property calls for more careful analysis
of different time parametrizations.

Suppose that µ = µ(x) > 0 is a smooth scalar positive function and that
the right-hand sides of (2.4) and (2.5) are related by

f(x) = µ(x)g(x) (2.7)

for all x ∈ R
n. Then, obviously, systems (2.4) and (2.5) are topologically

equivalent since their orbits are identical and it is the velocity of the motion
that makes them different. (The ratio of the velocities at a point x is exactly
µ(x).) Thus, the homeomorphism h in Definition 2.1 is the identity map
h(x) = x. In other words, the systems are distinguished only by the time
parametrization along the orbits.

Definition 2.4 Two systems (2.4) and (2.5) satisfying (2.7) for a smooth
positive function µ are called orbitally equivalent.

Clearly, two orbitally equivalent systems can be nondiffeomorphic, having
cycles that look like the same closed curve in the phase space but have
different periods.

Very often we study system dynamics locally, e.g., not in the whole state
space R

n but in some region U ⊂ R
n. Such a region may be, for example, a
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n. Then, obviously, systems (2.4) and (2.5) are topologically
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Very often we study system dynamics locally, e.g., not in the whole state
space R

n but in some region U ⊂ R
n. Such a region may be, for example, a
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neighborhood of an equilibrium (fixed point) or a cycle. The above defini-
tions of topological, smooth, and orbital equivalences can be easily “local-
ized” by introducing appropriate regions. For example, in the topological
classification of the phase portraits near equilibrium points, the following
modification of Definition 2.1 is useful.

Definition 2.5 A dynamical system {T,Rn, ϕt} is called locally topologi-
cally equivalent near an equilibrium x0 to a dynamical system {T,Rn, ψt}
near an equilibrium y0 if there exists a homeomorphism h : R

n → R
n that

is
(i) defined in a small neighborhood U ⊂ R

n of x0;
(ii) satisfies y0 = h(x0);
(iii) maps orbits of the first system in U onto orbits of the second system

in V = f(U) ⊂ R
n, preserving the direction of time.

If U is an open neighborhood of x0, then V is an open neighborhood
of y0. Let us also remark that equilibrium positions x0 and y0, as well as
regions U and V , might coincide.

Let us compare the above introduced equivalences in the following ex-
ample.

Example 2.1 (Node-focus equivalence) Consider two linear planar
dynamical systems: {

ẋ1 = −x1,
ẋ2 = −x2,

(2.8)

and {
ẋ1 = −x1 − x2,
ẋ2 = x1 − x2.

(2.9)

In the polar coordinates (ρ, θ) these systems can be written as{
ρ̇ = −ρ,
θ̇ = 0,

and {
ρ̇ = −ρ,
θ̇ = 1,

respectively. Thus,
ρ(t) = ρ0e

−t,
θ(t) = θ0,

for the first system, while

ρ(t) = ρ0e
−t,

θ(t) = θ0 + t,

for the second. Clearly, the origin is a stable equilibrium in both systems,
since ρ(t) → 0 as t → ∞. All other orbits of (2.8) are straight lines, while
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FIGURE 2.2. Node-focus equivalence.

those of (2.9) are spirals. The phase portraits of the systems are presented
in Figure 2.2. The equilibrium of the first system is a node (Figure 2.2(a)),
while in the second system it is a focus (Figure 2.2(b)). The difference in
behavior of the systems can also be perceived by saying that perturbations
decay near the origin monotonously in the first case and oscillatorily in the
second case.

The systems are neither orbitally nor smoothly equivalent. The first fact
is obvious, while the second follows from the observation that the eigen-
values of the equilibrium in the first system (λ1 = λ2 = −1) differ from
those of the second (λ1,2 = −1 ± i). Nevertheless, systems (2.8) and (2.9)
are topologically equivalent, for example, in a closed unit disc

U = {(x1, x2) : x2
1 + x2

2 ≤ 1} = {(ρ, θ) : ρ ≤ 1},

centered at the origin. Let us prove this explicitly by constructing a homeo-
morphism h : U → U as follows (see Figure 2.3). Take a point x = 0 in U
with polar coordinates (ρ0, θ0) and consider the time τ required to move,
along an orbit of system (2.8), from the point (1, θ0) on the boundary to

(1, θ  )00

U

y

x

FIGURE 2.3. The construction of the homeomorphism.
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the point x. This time depends only on ρ0 and can easily be computed:

τ(ρ0) = − ln ρ0.

Now consider an orbit of system (2.9) starting at the boundary point (1, θ0),
and let y = (ρ1, θ1) be the point at which this orbit arrives after τ(ρ0)
units of time. Thus, a map y = h(x) that transforms x = (ρ0, θ0) = 0 into
y = (ρ1, θ1) is obtained and is explicitly given by

h :
{

ρ1 = ρ0,
θ1 = θ0 − ln ρ0.

(2.10)

For x = 0, set y = 0, that is, h(0) = 0. Thus the constructed map transforms
U into itself by rotating each circle ρ0 = const by a ρ0-dependent angle.
This angle equals zero at ρ0 = 1 and increases as ρ0 → 0. The map is
obviously continuous and invertible and maps orbits of (2.8) onto orbits of
(2.9), preserving time direction. Thus, the two systems are topologically
equivalent within U .

However, the homeomorphism h is not differentiable in U . More precisely,
it is smooth away from the origin but not differentiable at x = 0. To see
this, one should evaluate the Jacobian matrix dy

dx in (x1, x2)-coordinates.
For example, the difference quotient corresponding to the derivative

∂y1

∂x1

∣∣∣∣
x1=x2=0

is given for x1 > 0 by

x1 cos(lnx1)− 0
x1 − 0

= cos(lnx1),

which has no limit as x1 → 0. ✸

Therefore, considering continuous-time systems modulo topological equi-
valence, we preserve information on the number, stability, and topology
of invariant sets, while losing information relating transient and time-
dependent behavior. Such information may be important in some appli-
cations. In these cases, stronger equivalences (such as orbital or smooth)
have to be applied.

A combination of smooth and orbital equivalences gives a useful equiva-
lence relation, which will be used frequently in this book.

Definition 2.6 Two systems (2.4) and (2.5) are called smoothly orbitally
equivalent if (2.5) is smoothly equivalent to a system that is orbitally equiv-
alent to (2.4).

According to this definition, two systems are equivalent (in R
n or in some

region U ⊂ R
n) if we can transform one of them into the other by a smooth

invertible change of coordinates and multiplication by a positive smooth
function of the coordinates. Clearly, two smoothly orbitally equivalent sys-
tems are topologically equivalent, while the inverse is not true.
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2.2 Topological classification of generic equilibria
and fixed points

In this section we study the geometry of the phase portrait near generic,
namely hyperbolic, equilibrium points in continuous- and discrete-time dy-
namical systems and present their topological classification.

2.2.1 Hyperbolic equilibria in continuous-time systems
Consider a continuous-time dynamical system defined by

ẋ = f(x), x ∈ R
n, (2.11)

where f is smooth. Let x0 = 0 be an equilibrium of the system (i.e., f(x0) =
0) and let A denote the Jacobian matrix df

dx evaluated at x0. Let n−, n0,
and n+ be the numbers of eigenvalues of A (counting multiplicities) with
negative, zero, and positive real part, respectively.

Definition 2.7 An equilibrium is called hyperbolic if n0 = 0, that is, if
there are no eigenvalues on the imaginary axis. A hyperbolic equilibrium is
called a hyperbolic saddle if n−n+ = 0.

Since a generic matrix has no eigenvalues on the imaginary axis (n0 = 0),
hyperbolicity is a typical property and an equilibrium in a generic system
(i.e., one not satisfying certain special conditions) is hyperbolic. We will not
try to formalize these intuitively obvious properties, though it is possible
using measure theory and transversality arguments (see the bibliographi-
cal notes). Instead, let us study the geometry of the phase portrait near
a hyperbolic equilibrium in detail. For an equilibrium (not necessarily a
hyperbolic one), we introduce two invariant sets:

W s(x0) = {x : ϕtx→ x0, t→ +∞},Wu(x0) = {x : ϕtx→ x0, t→ −∞},
where ϕt is the flow associated with (2.11).

Definition 2.8 W s(x0) is called the stable set of x0, while Wu(x0) is
called the unstable set of x0.

Theorem 2.1 (Local Stable Manifold) Let x0 be a hyperbolic equilib-
rium (i.e., n0 = 0, n− + n+ = n ). Then the intersections of W s(x0)
and Wu(x0) with a sufficiently small neighborhood of x0 contain smooth
submanifolds W s

loc(x0) and Wu
loc(x0) of dimension n− and n+, respectively.

Moreover, W s
loc(x0)(Wu

loc(x0)) is tangent at x0 to T s(Tu), where T s(Tu)
is the generalized eigenspace corresponding to the union of all eigenvalues
of A with Re λ < 0 (Re λ > 0). ✷

The proof of the theorem, which we are not going to present here, can be
carried out along the following lines (Hadamard-Perron). For the unstable
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manifold, take the linear manifold Tu passing through the equilibrium and
apply the map ϕ1 to this manifold, where ϕt is the flow corresponding
to the system. The image of Tu under ϕ1 is some (nonlinear) manifold
of dimension n+ tangent to Tu at x0. Restrict attention to a sufficiently
small neighborhood of the equilibrium where the linear part is “dominant”
and repeat the procedure. It can be shown that the iterations converge
to a smooth invariant submanifold defined in this neighborhood of x0 and
tangent to Tu at x0. The limit is the local unstable manifold Wu

loc(x0). The
local stable manifold W s

loc(x0) can be constructed by applying ϕ−1 to T s.

Remark:
Globally, the invariant sets W s and Wu are immersed manifolds of di-

mensions n− and n+, respectively, and have the same smoothness proper-
ties as f . Having these properties in mind, we will call the sets W s and
Wu the stable and unstable invariant manifolds of x0, respectively. ♦

Example 2.2 (Saddles and saddle-foci in R
3) Figure 2.4 illustrates
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FIGURE 2.4. (a) Saddle and (b) saddle-focus: The vectors νk are the eigenvectors
corresponding to the eigenvalues λk.

the theorem for the case where n = 3, n− = 2, and n+ = 1. In this
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the theorem for the case where n = 3, n− = 2, and n+ = 1. In this
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case, there are two invariant manifolds passing through the equilibrium,
namely, the two-dimensional manifold W s(x0) formed by all incoming or-
bits, and the one-dimensional manifold Wu(x0) formed by two outgoing
orbits Wu

1 (x0) and Wu
2 (x0). All orbits not belonging to these manifolds

pass near the equilibrium and eventually leave its neighborhood in both
time directions.

In case (a) of real simple eigenvalues (λ3 < λ2 < 0 < λ1), orbits on
W s form a node, while in case (b) of complex eigenvalues (Re λ2,3 < 0 <
λ1, λ̄3 = λ2), W s carries a focus. Thus, in the first case, the equilibrium is
called a saddle, while in the second one it is referred to as a saddle-focus.
The equilibria in these two cases are topologically equivalent. Nevertheless,
it is useful to distinguish them, as we shall see in our study of homoclinic
orbit bifurcations (Chapter 6). ✸

The following theorem gives the topological classification of hyperbolic
equilibria.

Theorem 2.2 The phase portraits of system (2.11) near two hyperbolic
equilibria, x0 and y0, are locally topologically equivalent if and only if these
equilibria have the same number n− and n+ of eigenvalues with Re λ < 0
and with Re λ > 0, respectively. ✷

Often, the equilibria x0 and y0 are then also called topologically equiv-
alent. The proof of the theorem is based on two ideas. First, it is possible
to show that near a hyperbolic equilibrium the system is locally topologi-
cally equivalent to its linearization: ξ̇ = Aξ (Grobman-Hartman Theorem).
This result should be applied both near the equilibrium x0 and near the
equilibrium y0. Second, the topological equivalence of two linear systems
having the same numbers of eigenvalues with Re λ < 0 and Re λ > 0 and
no eigenvalues on the imaginary axis has to be proved. Example 2.1 is a
particular case of such a proof. Nevertheless, the general proof is based on
the same idea. See the Appendix at the end of this chapter for references.

Example 2.3 (Generic equilibria of planar systems) Consider a
two-dimensional system

ẋ = f(x), x = (x1, x2)T ∈ R
2,

with smooth f . Suppose that x = 0 is an equilibrium, f(0) = 0, and let

A =
df(x)
dx

∣∣∣∣
x=0

be its Jacobian matrix. Matrix A has two eigenvalues λ1, λ2, which are the
roots of the characteristic equation

λ2 − σλ + ∆ = 0,
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FIGURE 2.5. Topological classification of hyperbolic equilibria on the plane.

where σ = tr A, ∆ = detA.
Figure 2.5 displays well-known classical results. There are three topo-

logical classes of hyperbolic equilibria on the plane: stable nodes (foci),
saddles, and unstable nodes (foci). As we have discussed, nodes and foci (of
corresponding stability) are topologically equivalent but can be identified
looking at the eigenvalues.

Definition 2.9 Nodes and foci are both called antisaddles.

Stable points have two-dimensional stable manifolds and no unstable
manifolds. For unstable equilibria the situation is reversed. Saddles have
one-dimensional stable and unstable manifolds, sometimes called separatri-
ces. ✸

2.2.2 Hyperbolic fixed points in discrete-time systems
Now consider a discrete-time dynamical system

x �→ f(x), x ∈ R
n, (2.12)

where the map f is smooth along with its inverse f−1 (diffeomorphism). Let
x0 = 0 be a fixed point of the system (i.e., f(x0) = x0) and let A denote
the Jacobian matrix df

dx evaluated at x0. The eigenvalues µ1, µ2, . . . , µn
of A are called multipliers of the fixed point. Notice that there are no
zero multipliers, due to the invertibility of f . Let n−, n0, and n+ be the
numbers of multipliers of x0 lying inside, on, and outside the unit circle
{µ ∈ C

1 : |µ| = 1}, respectively.
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zero multipliers, due to the invertibility of f . Let n−, n0, and n+ be the
numbers of multipliers of x0 lying inside, on, and outside the unit circle
{µ ∈ C

1 : |µ| = 1}, respectively.
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Definition 2.10 A fixed point is called hyperbolic if n0 = 0, that is, if
there are no multipliers on the unit circle. A hyperbolic fixed point is called
a hyperbolic saddle if n−n+ = 0.

Notice that hyperbolicity is a typical property also in discrete time. As
in the continuous-time case, we can introduce stable and unstable invariant
sets for a fixed point x0 (not necessarily a hyperbolic one):

W s(x0) = {x : fk(x) → x0, k → +∞},
Wu(x0) = {x : fk(x) → x0, k → −∞},

where k is integer “time” and fk(x) denotes the kth iterate of x under f .
An analogue of Theorem 2.1 can be formulated.

Theorem 2.3 (Local Stable Manifold) Let x0 be a hyperbolic fixed po-
int, namely, n0 = 0, n− + n+ = n. Then the intersections of W s(x0)
and Wu(x0) with a sufficiently small neighborhood of x0 contain smooth
submanifolds W s

loc(x0) and Wu
loc(x0) of dimension n− and n+, respectively.

Moreover, W s
loc(x0)(Wu

loc(x0)) is tangent at x0 to T s(Tu), where T s(Tu)
is the generalized eigenspace corresponding to the union of all eigenvalues
of A with |µ| < 1(|µ| > 1). ✷

The proof of the theorem is completely analogous to that in the con-
tinuous-time case, if one substitutes ϕ1 by f . Globally, the invariant sets
W s and Wu are again immersed manifolds of dimension n− and n+, re-
spectively, and have the same smoothness properties as the map f . The
manifolds cannot intersect themselves, but their global topology may be
very complex, as we shall see later.

The topological classification of hyperbolic fixed points follows from a
theorem that is similar to Theorem 2.2 for equilibria in the continuous-
time systems.

Theorem 2.4 The phase portraits of (2.12) near two hyperbolic fixed points,
x0 and y0, are locally topologically equivalent if and only if these fixed points
have the same number n− and n+ of multipliers with |µ| < 1 and |µ| > 1,
respectively, and the signs of the products of all the multipliers with |µ| < 1
and with |µ| > 1 are the same for both fixed points. ✷

As in the continuous-time case, the proof is based upon the fact that
near a hyperbolic fixed point the system is locally topologically equiva-
lent to its linearization: x �→ Ax (discrete-time version of the Grobman-
Hartman Theorem). The additional conditions on the products are due
to the fact that the dynamical system can define either an orientation-
preserving or orientation-reversing map on the stable or unstable manifold
near the fixed point. Recall that a diffeomorphism on R

l preserves orien-
tation in R

l if detJ > 0, where J is its Jacobian matrix, and reverses it
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otherwise. Two topologically equivalent maps must have the same orienta-
tion properties. The products in Theorem 2.4 are exactly the determinants
of the Jacobian matrices of the map (2.12) restricted to its stable and un-
stable local invariant manifolds. It should be clear that one needs only
account for real multipliers to compute these signs, since the product of a
complex-conjugate pair of multipliers is always positive.

Let us consider two examples of fixed points.

Example 2.4 (Stable fixed points in R
1) Suppose x0 = 0 is a fixed

point of a one-dimensional discrete-time system (n = 1). Let n− = 1, mean-
ing that the unique multiplier µ satisfies |µ| < 1. In this case, according
to Theorem 2.3, all orbits starting in some neighborhood of x0 converge
to x0. Depending on the sign of the multiplier, we have the two possi-
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FIGURE 2.6. Stable fixed points of one-dimensional systems: (a) 0 < µ < 1; (b)
−1 < µ < 0.

bilities presented in Figure 2.6. If 0 < µ < 1, the iterations converge to
x0 monotonously (Figure 2.6(a)). If −1 < µ < 0, the convergence is non-
monotonous and the phase point “jumps” around x0 while converging to x0
(Figure 2.6(b)). In the first case the map preserves orientation in R

1 while
reversing it in the second. It should be clear that “jumping” orbits can-
not be transformed into monotonous ones by a continuous map. Figure 2.7
presents orbits near the two types of fixed points using staircase diagrams.
✸

Example 2.5 (Saddle fixed points in R
2) Suppose x0 = 0 is a fixed

point of a two-dimensional discrete-time system (now n = 2). Assume
that n− = n+ = 1, so that there is one (real) multiplier µ1 outside the
unit circle (|µ1| > 1) and one (real) multiplier µ2 inside the unit circle
(|µ2| < 1). In our case, there are two invariant manifolds passing through
the fixed point, namely the one-dimensional manifold W s(x0) formed by
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FIGURE 2.7. Staircase diagrams for stable fixed points.

orbits converging to x0 under iterations of f , and the one-dimensional man-
ifold Wu(x0) formed by orbits tending to x0 under iterations of f−1. Recall
that the orbits of a discrete-time system are sequences of points. All orbits
not belonging to the aforementioned manifolds pass near the fixed point
and eventually leave its neighborhood in both “time” directions.

Figure 2.8 shows two types of saddles in R
2. In the case (a) of positive

multipliers, 0 < µ2 < 1 < µ1, an orbit starting at a point on W s(x0)
converges to x0 monotonously. Thus, the stable manifold W s(x0) is formed
by two invariant branches, W s

1,2(x0), separated by x0. The same can be
said about the unstable manifold Wu(x0) upon replacing f by its inverse.
The restriction of the map onto both manifolds preserves orientation.

If the multipliers are negative (case (b)), µ1 < −1 < µ2 < 0, the orbits
on the manifolds “jump” between the two components W s,u

1,2 separated by
x0. The map reverses orientation in both manifolds. The branches W s,u

1,2
are invariant with respect to the second iterate f2 of the map. ✸

Remarks:
(1) The stable and unstable manifolds W s,u(x0) of a two-dimensional

saddle are examples of invariant curves: If x belongs to the curve, so does
any iterate fk(x). The invariant curve is not an orbit. Actually, it consists
of an infinite number of orbits. Figure 2.9 shows invariant curves and an
orbit near a saddle fixed point with positive multipliers.

(2) The global behavior of the stable and unstable manifolds W s,u(x0)
of a hyperbolic fixed point can be very complex, thus making the word
“contain” absolutely necessary in Theorem 2.3.

Return, for example, to the planar case and suppose that x0 is a saddle
with positive multipliers. First of all, unlike the stable and unstable sets
of an equilibrium in a continuous-time system, the manifolds W s(x0) and
Wu(x0) of a generic discrete-time system can intersect at nonzero angle
(transversally) (see Figure 2.10(a)).
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FIGURE 2.8. Invariant manifolds of saddle fixed points on the plane: (a) positive
multipliers; (b) negative multipliers.

Moreover, one transversal intersection, if it occurs, implies an infinite
number of such intersections. Indeed, let x0 be a point of the intersection.
By definition, it belongs to both invariant manifolds. Therefore, the orbit
starting at this point converges to the saddle point x0 under repeated it-
eration of either f or f−1 : fk(x0) → x0 as k → ±∞. Each point of this
orbit is a point of intersection of W s(x0) and Wu(x0). This infinite num-
ber of intersections forces the manifolds to “oscillate” in a complex manner
near x0, as sketched in Figure 2.10(b). The resulting “web” is called the
Poincaré homoclinic structure. The orbit starting at x0 is said to be homo-
clinic to x0. It is the presence of the homoclinic structure that can make
the intersection of W s,u(x0) with any neighborhood of the saddle x0 highly
nontrivial.

The dynamical consequences of the existence of the homoclinic structure
are also dramatic: It results in the appearance of an infinite number of
periodic points with arbitrary high periods near the homoclinic orbit. This
follows from the presence of Smale horseshoes (see Chapter 1). Figure 2.11
illustrates how the horseshoes are formed. Take a (curvilinear) rectangle
S near the stable manifold W s(x0) and consider its iterations fkS. If the
homoclinic structure is present, for a sufficiently high number of iterations
N , fNS will look like the folded and expanded band Q shown in the figure.
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Poincaré homoclinic structure. The orbit starting at x0 is said to be homo-
clinic to x0. It is the presence of the homoclinic structure that can make
the intersection of W s,u(x0) with any neighborhood of the saddle x0 highly
nontrivial.

The dynamical consequences of the existence of the homoclinic structure
are also dramatic: It results in the appearance of an infinite number of
periodic points with arbitrary high periods near the homoclinic orbit. This
follows from the presence of Smale horseshoes (see Chapter 1). Figure 2.11
illustrates how the horseshoes are formed. Take a (curvilinear) rectangle
S near the stable manifold W s(x0) and consider its iterations fkS. If the
homoclinic structure is present, for a sufficiently high number of iterations
N , fNS will look like the folded and expanded band Q shown in the figure.



54 2. Equivalence and Bifurcations

s

W u

x

8

0
W

14

7

23
5

6

FIGURE 2.9. Invariant curves and an orbit near a saddle fixed point.
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FIGURE 2.10. Poincaré homoclinic structure.

The intersection of S with Q forms several horseshoes, where each of them
implies an infinite number of cycles with arbitrary high periods. ♦

2.2.3 Hyperbolic limit cycles
Using the results of the previous section and the Poincaré map construction
(see Chapter 1), we can define hyperbolic limit cycles in continuous-time
systems and describe the topology of phase orbits near such cycles. Consider
a continuous-time dynamical system

ẋ = f(x), x ∈ R
n, (2.13)

with smooth f , and assume that there is an isolated periodic orbit (limit cy-
cle) L0 of (2.13). As in Chapter 1, let Σ be a local cross-section to the cycle
of dimension (n − 1) (codim Σ = 1) with coordinates ξ = (ξ1, . . . , ξn−1)T .
System (2.13) locally defines a smooth invertible map P (a Poincaré map)
from Σ to Σ along the orbits of (2.13). The point ξ0 of intersection of L0
with Σ is a fixed point of the map P, P (ξ0) = ξ0.

Generically, the fixed point ξ0 is hyperbolic, so there exist invariant man-



54 2. Equivalence and Bifurcations

s

W u

x

8

0
W

14

7

23
5

6

FIGURE 2.9. Invariant curves and an orbit near a saddle fixed point.

0x
0x

W

W u

s

x
0x

f     x-1 0(    )

(    )
0

f    x2 0(    )
0f  x

(a) (b)
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FIGURE 2.11. Smale horseshoes embedded into the Poincaré homoclinic struc-
ture.

ifolds
W s(ξ0) = {ξ ∈ Σ : P k(ξ) → ξ0, k → +∞}

and
Wu(ξ0) = {ξ ∈ Σ : P−k(ξ) → ξ0, k → +∞},

of the dimensions n− and n+, respectively, where n∓ are the numbers of
eigenvalues of the Jacobian matrix of P at ξ0 located inside and outside
the unit circle. Recall that n− + n+ = n − 1 and that the eigenvalues are
called multipliers of the cycle. The invariant manifolds W s,u(ξ0) are the
intersections with Σ of the stable and unstable manifolds of the cycle:

W s(L0) = {x : ϕtx→ L0, t→ +∞},
Wu(L0) = {x : ϕtx→ L0, t→ −∞},

where ϕt is the flow corresponding to (2.13).
We can now use the results on the topological classification of fixed points

of discrete-time dynamical systems to classify limit cycles. A limit cycle is
called hyperbolic if ξ0 is a hyperbolic fixed point of the Poincaré map.
Similarly, a hyperbolic cycle is called a saddle cycle if it has multipliers
both inside and outside the unit circle (i.e., n−n+ = 0). Recall that the
product of the multipliers is always positive (see Chapter 1); therefore the
Poincaré map preserves orientation in Σ. This imposes some restrictions on
the location of the multipliers in the complex plane.

Example 2.6 (Hyperbolic cycles in planar systems) Consider a
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smooth planar system {
ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2),

x = (x1, x2)T ∈ R
2. Let x0(t) be a solution corresponding to a limit cycle

L0 of the system, and let T0 be the (minimal) period of this solution. There
is only one multiplier of the cycle, µ1, which is positive and is given by

µ1 = exp

{∫ T0

0
(div f)(x0(t)) dt

}
> 0,

where div stands for the divergence of the vector field:

(div f)(x) =
∂f1(x)
∂x1

+
∂f2(x)
∂x2

.

If 0 < µ1 < 1, we have a stable hyperbolic cycle and all nearby orbits con-
verge exponentially to it, while for µ1 > 1 we have an unstable hyperbolic
cycle with exponentially diverging neighboring orbits. ✸
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FIGURE 2.12. Saddle cycles in three-dimensional systems: (a) positive multipliers
and (b) negative multipliers.

Example 2.7 (Saddle cycles in three-dimensional systems) Ex-
ample 2.5 provides two types of saddle limit cycles existing in R

3 (see Figure
2.12). If the multipliers of the Poincaré map satisfy

0 < µ2 < 1 < µ1,
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both invariant manifolds W s(L0) and Wu(L0) of the cycle L0 are simple
bands (Figure 2.12(a)), while in the case when the multipliers satisfy

µ1 < −1 < µ2 < 0,

the manifolds W s(L0) and Wu(L0) are twisted bands (called Möbius strips)
(see Figure 2.12(b)). Other types of saddle cycles in R

3 are impossible, since
the product of the multipliers of any Poincaré map is positive. Thus, the
manifolds W s(L0) and Wu(L0) must both be simple or twisted.

Finally, remark that W s(L) and Wu(L) can intersect along orbits ho-
moclinic to the cycle L, giving rise to Poincaré homoclinic structure and
Smale horseshoes on the cross-section Σ. ✸

2.3 Bifurcations and bifurcation diagrams

Now consider a dynamical system that depends on parameters. In the
continuous-time case we will write it as

ẋ = f(x, α), (2.14)

while in the discrete-time case it is written as

x �→ f(x, α), (2.15)

where x ∈ R
n and α ∈ R

m represent phase variables and parameters,
respectively. Consider the phase portrait of the system.2 As the parameters
vary, the phase portrait also varies. There are two possibilities: either the
system remains topologically equivalent to the original one, or its topology
changes.

Definition 2.11 The appearance of a topologically nonequivalent phase
portrait under variation of parameters is called a bifurcation.

Thus, a bifurcation is a change of the topological type of the system as its
parameters pass through a bifurcation (critical) value. Actually, the central
topic of this book is the classification and analysis of various bifurcations.

Example 2.8 (Andronov-Hopf bifurcation) Consider the following
planar system that depends on one parameter:{

ẋ1 = αx1 − x2 − x1(x2
1 + x2

2),
ẋ2 = x1 + αx2 − x2(x2

1 + x2
2). (2.16)

2If necessary, one may consider the phase portrait in a parameter-dependent
region Uα ⊂ R

n.
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In polar coordinates (ρ, θ) it takes the form{
ρ̇ = ρ(α− ρ2),
θ̇ = 1,

(2.17)

and can be integrated explicitly (see Exercise 6). Since the equations for

α < 0 α = 0 α > 0

FIGURE 2.13. Hopf bifurcation.

ρ and θ are independent in (2.17), we can easily draw phase portraits of
the system in a fixed neighborhood of the origin, which is obviously the
only equilibrium point (see Figure 2.13). For α ≤ 0, the equilibrium is a
stable focus, since ρ̇ < 0 and ρ(t) → 0, if we start from any initial point. On
the other hand, if α > 0, we have ρ̇ > 0 for small ρ > 0 (the equilibrium
becomes an unstable focus), and ρ̇ < 0 for sufficiently large ρ. It is easy to
see from (2.17) that the system has a periodic orbit for any α > 0 of radius
ρ0 =

√
α (at ρ = ρ0 we have ρ̇ = 0). Moreover, this periodic orbit is stable,

since ρ̇ > 0 inside and ρ̇ < 0 outside the cycle.
Therefore, α = 0 is a bifurcation parameter value. Indeed, a phase por-

trait with a limit cycle cannot be deformed by a one-to-one transformation
into a phase portrait with only an equilibrium. The presence of a limit cy-
cle is said to be a topological invariant. As α increases and crosses zero, we
have a bifurcation in system (2.16) called the Andronov-Hopf bifurcation.
It leads to the appearance, from the equilibrium state, of small-amplitude
periodic oscillations. We will use this bifurcation as an example later in
this chapter and analyze it in detail in Chapters 3 and 5. ✸

As should be clear, an Andronov-Hopf bifurcation can be detected if
we fix any small neighborhood of the equilibrium. Such bifurcations are
called local. One can also define local bifurcations in discrete-time systems
as those detectable in any small neighborhood of a fixed point. We will
often refer to local bifurcations as bifurcations of equilibria or fixed points,
although we will analyze not just these points but the whole phase portraits
near the equilibria. Those bifurcations of limit cycles which correspond to
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local bifurcations of associated Poincaré maps are called local bifurcations
of cycles.

There are also bifurcations that cannot be detected by looking at small
neighborhoods of equilibrium (fixed) points or cycles. Such bifurcations are
called global.

Example 2.9 (Heteroclinic bifurcation) Consider the following pla-
nar system that depends on one parameter:{

ẋ1 = 1− x2
1 − αx1x2,

ẋ2 = x1x2 + α(1− x2
1). (2.18)

The system has two saddle equilibria

x(1) = (−1, 0), x(2) = (1, 0),

for all values of α (see Figure 2.14). At α = 0 the horizontal axis is invariant
and, therefore, the saddles are connected by an orbit that is asymptotic to
one of them for t→ +∞ and to the other for t→ −∞. Such orbits are called
heteroclinic. Similarly, an orbit that is asymptotic to the same equilibrium
as t→ +∞ and t→ −∞ is called homoclinic. For α = 0, the x1-axis is no
longer invariant, and the connection disappears. This is obviously a global
bifurcation. To detect this bifurcation we must fix a region U covering both
saddles. We will study hetero- and homoclinic orbit bifurcations in Chapter
6. ✸

There are global bifurcations in which certain local bifurcations are in-
volved. In such cases, looking at the local bifurcation provides only partial
information on the behavior of the system. The following example illus-
trates this possibility.

Example 2.10 (Saddle-node homoclinic bifurcation) Let us ana-
lyze the following system on the plane:{

ẋ1 = x1(1− x2
1 − x2

2) − x2(1 + α + x1),
ẋ2 = x1(1 + α + x1) + x2(1− x2

1 − x2
2), (2.19)

where α is a parameter. In polar coordinates (ρ, θ) system (2.19) takes the
form {

ρ̇ = ρ(1− ρ2),
θ̇ = 1 + α + ρ cos θ.

(2.20)

Fix a thin annulus U around the unit circle {(ρ, θ) : ρ = 1}. At α = 0,
there is a nonhyperbolic equilibrium point of system (2.20) in the annulus:

x0 = (ρ0, θ0) = (1, π)

(see Figure 2.15). It has eigenvalues λ1 = 0, λ2 = −2 (check!). For small
positive values of α the equilibrium disappears, while for small negative



2.3 Bifurcations and bifurcation diagrams 59

local bifurcations of associated Poincaré maps are called local bifurcations
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α < 0

α = 0

α > 0

FIGURE 2.14. Heteroclinic bifurcation.
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α < 0 α = 0 α > 0

FIGURE 2.15. Saddle-node homoclinic bifurcation.

α it splits into a saddle and a node (this bifurcation is called a saddle-
node or fold bifurcation; see Chapter 3). This is a local event. However,
for α > 0 a stable limit cycle appears in the system coinciding with the
unit circle. This circle is always an invariant set in the system, but for
α ≤ 0 it contains equilibria. Looking at only a small neighborhood of the
nonhyperbolic equilibrium, we miss the global appearance of the cycle.
Notice that at α = 0 there is exactly one orbit that is homoclinic to the
nonhyperbolic equilibrium x0. We will discuss such global bifurcations in
Chapter 7. ✸

We return now to a general discussion of bifurcations in a parameter-de-
pendent system (2.14) (or (2.15)). Take some value α = α0 and consider
a maximal connected parameter set (called a stratum) containing α0 and
composed by those points for which the system has a phase portrait that is
topologically equivalent to that at α0. Taking all such strata in the parame-
ter space R

m, we obtain the parametric portrait of the system. For example,
system (2.16) exhibiting the Andronov-Hopf bifurcation has a parametric
portrait with two strata: {α ≤ 0} and {α > 0}. In system (2.18) there are
three strata: {α < 0}, {α = 0}, and {α > 0}. Notice, however, that the
phase portrait of (2.18) for α < 0 is topologically equivalent to that for
α > 0.

The parametric portrait together with its characteristic phase portraits
constitute a bifurcation diagram.

Definition 2.12 A bifurcation diagram of the dynamical system is a strat-
ification of its parameter space induced by the topological equivalence, to-
gether with representative phase portraits for each stratum.

It is desirable to obtain the bifurcation diagram as a result of the qualita-
tive analysis of a given dynamical system. It classifies in a very condensed
way all possible modes of behavior of the system and transitions between
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them (bifurcations) under parameter variations.3 Note that the bifurcation
diagram depends, in general, on the region of phase space considered.

Remark:
If a dynamical system has a one- or two-dimensional phase space and

depends on only one parameter, its bifurcation diagram can be visualized
in the direct product of the phase and parameter spaces, R

1,2×R
1 with the

phase portraits represented by one- or two-dimensional slices α = const.
Consider, for example, a scalar system

ẋ = αx− x3, x ∈ R
1, α ∈ R

1.

This system has an equilibrium x0 = 0 for all α. This equilibrium is stable
for α < 0 and unstable for α > 0 (α is the eigenvalue of this equilibrium).
For α > 0, there are two extra equilibria branching from the origin (namely,
x1,2 = ±√α) which are stable. This bifurcation is often called a pitchfork
bifurcation, the reason for which becomes immediately clear if one has a
look at the bifurcation diagram of the system presented in (x, α)-space
(see Figure 2.16). Notice that the system demonstrating the pitchfork bi-

α

x

xx

x 0

1

2

0

FIGURE 2.16. Pitchfork bifurcation.

furcation is invariant under the transformation x �→ −x. We will study
bifurcations in such symmetric systems in Chapter 7. ♦

In the simplest cases, the parametric portrait is composed by a finite
number of regions in R

m. Inside each region the phase portrait is topo-
logically equivalent. These regions are separated by bifurcation boundaries,
which are smooth submanifolds in R

m (i.e., curves, surfaces). The bound-
aries can intersect, or meet. These intersections subdivide the boundaries
into subregions, and so forth. A bifurcation boundary is defined by specify-
ing a phase object (equilibrium, cycle, etc.) and some bifurcation conditions

3Recall that some time-related information on the behavior of the system is
lost due to topological equivalence.
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determining the type of its bifurcation (Hopf, fold, etc.). For example, the
Andronov-Hopf bifurcation of an equilibrium is characterized by one bifur-
cation condition, namely, the presence of a purely imaginary pair of eigen-
values of the Jacobian matrix evaluated at this equilibrium (cf. Example
2.7):

Re λ1,2 = 0.

When a boundary is crossed, the bifurcation occurs.

Definition 2.13 The codimension of a bifurcation in system (2.14) or
(2.15) is the difference between the dimension of the parameter space and
the dimension of the corresponding bifurcation boundary.

Equivalently, the codimension (codim for short) is the number of inde-
pendent conditions determining the bifurcation. This is the most practical
definition of the codimension. It makes it clear that the codimension of
a certain bifurcation is the same in all generic systems depending on a
sufficient number of parameters.

Remark:
The bifurcation diagram of even a simple continuous-time system in

a bounded region on the plane can be composed by an infinite num-
ber of strata. The situation becomes more involved for multidimensional
continuous-time systems (with n > 3). In such systems the bifurcation val-
ues can be dense in some parameter regions and the parametric portrait
can have a Cantor (fractal) structure with certain patterns repeated on
smaller and smaller scales to infinity. Clearly, the task of fully investigating
such a bifurcation diagram is practically impossible. Nevertheless, even par-
tial knowledge of the bifurcation diagram provides important information
about the behavior of the system being studied. ♦

2.4 Topological normal forms for bifurcations

Fortunately, bifurcation diagrams are not entirely “chaotic.” Different strata
of bifurcation diagrams in generic systems interact with each other follow-
ing certain rules. This makes bifurcation diagrams of systems arising in
many different applications look similar. To discuss this topic, we have to
decide when two dynamical systems have “qualitatively similar” or equiv-
alent bifurcation diagrams. Consider two (for definitiveness, continuous-
time) dynamical systems:

ẋ = f(x, α), x ∈ R
n, α ∈ R

m, (2.21)

and
ẏ = g(y, β), y ∈ R

n, β ∈ R
m, (2.22)
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with smooth right-hand sides and the same number of variables and param-
eters. The following definition is parallel to Definition 2.1, with necessary
modifications due to parameter dependence.

Definition 2.14 Dynamical system (2.21) is called topologically equiva-
lent to a dynamical system (2.22) if

(i) there exists a homeomorphism of the parameter space p : R
m →

R
m, β = p(α);
(ii) there is a parameter-dependent homeomorphism of the phase space

hα : R
n → R

n, y = hα(x), mapping orbits of the system (2.21) at parameter
values α onto orbits of the system (2.22) at parameter values β = p(α),
preserving the direction of time.

Clearly, the homeomorphism p transforms the parametric portrait of sys-
tem (2.21) into the parametric portrait of system (2.22), while the homeo-
morphism hα maps corresponding phase portraits. By definition, topolog-
ically equivalent parameter-dependent systems have (topologically) equiv-
alent bifurcation diagrams.

Remark:
Notice that we do not require the homeomorphism hα to depend contin-

uously on α, which would imply that the map (x, α) �→ (hp(α)(x), p(α)) be
a homeomorphism of the direct product R

n × R
m. For this reason, some

authors call the above-defined topological equivalence weak (or fiber) topo-
logical equivalence. ♦

As in the constant-parameter case, Definition 2.14 can be modified if one
is interested in comparing local behavior of the systems, for example, in
a small neighborhood of the origin of the state space, for small parameter
values.

Definition 2.15 Two systems (2.21) and (2.22) are called locally topologi-
cally equivalent near the origin, if there exists a map (x, α) �→ (hα(x), p(α)),
defined in a small neighborhood of (x, α) = (0, 0) in the direct product
R
n × R

m and such that

(i) p : R
m → R

m is a homeomorphism defined in a small neighborhood
of α = 0, p(0) = 0;

(ii) hα : R
n → R

n is a parameter-dependent homeomorphism defined in
a small neighborhood Uα of x = 0, h0(0) = 0, and mapping orbits of (2.21)
in Uα onto orbits of (2.22) in hα(Uα), preserving the direction of time.

This definition means that one can introduce two small neighborhoods
of the origin Uα and Vβ , whose diameters are bounded away from zero
uniformly for α, β varying in some fixed small neighborhoods of the ori-
gin of the corresponding parameter spaces. Then, the homeomorphism hα
maps orbits of (2.21) in Uα onto orbits of (2.22) in Vp(α), preserving their
orientation.
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We now consider the problem of the classification of all possible bifur-
cation diagrams of generic systems, at least, locally (i.e. near bifurcation
boundaries in the parameter space and corresponding critical orbits in the
phase space) and up to and including certain codimension. These local
diagrams could then serve as “building blocks” to construct the “global”
bifurcation diagram of any system. This problem has been solved for equi-
librium bifurcations in two-dimensional continuous-time systems up to and
including codim 3. In some sense, it has also been solved for bifurcations
of equilibria and fixed points in multidimensional continuous- and discrete-
time systems up to and including codim 2, although the relevant results are
necessarily incomplete (see Chapters 3, 4, 8, and 9). There are also several
outstanding results concerning higher-codimension local bifurcations and
some global bifurcations of codim 1 and 2.

The classification problem formulated above is simplified due to the fol-
lowing obvious but important observation. The minimal number of free pa-
rameters required to meet a codim k bifurcation in a parameter-dependent
system is exactly equal to k. Indeed, to satisfy a single bifurcation condition,
we need, in general, to “tune” a (single) parameter of the system. If there
are two conditions to be satisfied, two parameters have to be varied, and so
forth. In other words, we have to control k parameters to reach a codim k
bifurcation boundary in the parametric portrait of a generic system. On
the other hand, it is enough to study a bifurcation of codim k in generic
k-parameter systems. General m-parameter (m > k) diagrams near the
bifurcation boundary can then be obtained by “shifting” the k-parameter
diagram in the complementary directions. For example, the Andronov-Hopf
bifurcation is a codim 1 (local) bifurcation. Thus, it occurs at isolated pa-
rameter values in systems depending on one parameter. In two-parameter
systems, it generally occurs on specific curves (one-dimensional manifolds).
If we cross this curve at a nonzero angle (transversally), the resulting one-
parameter bifurcation diagrams (where the parameter, e.g., is the arclength
along a transversal curve) will be topologically equivalent to the original
one-parameter diagram. The same will be true if we cross a two-dimensional
surface corresponding to the Hopf bifurcation in a system depending on
three parameters.

For local bifurcations of equilibria and fixed points, universal bifurcation
diagrams are provided by topological normal forms.4 This is one of the
central notions in bifurcation theory. Let us discuss it in the continuous-
time setting, although it also applies to discrete-time systems. Sometimes
it is possible to construct a simple (polynomial in ξi) system

ξ̇ = g(ξ, β;σ), ξ ∈ R
n, β ∈ R

k, σ ∈ R
l, (2.23)

4It is possible to construct a kind of topological normal form for certain global
bifurcations involving homoclinic orbits.
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which has at β = 0 an equilibrium ξ = 0 satisfying k bifurcation conditions
determining a codim k bifurcation of this equilibrium. Here σ is a vector
of the coefficients σi, i = 1, 2, . . . , l, of the polynomials involved in (2.23).
In all the cases we will consider, there is a finite number of regions in the
coefficient space corresponding to topologically nonequivalent bifurcation
diagrams of (2.23). In the simplest situations, the σi take only a finite
number of integer values. For example, all the coefficients σi = 1 except a
single σi0 = ±1. In more complex situations, some components of σ may
take real values (modulae).

Together with system (2.23), let us consider a system

ẋ = f(x, α), x ∈ R
n, α ∈ R

k, (2.24)

having at α = 0 an equilibrium x = 0.

Definition 2.16 (Topological normal form) System (2.23) is called a
topological normal form for the bifurcation if any generic system (2.24)
with the equilibrium x = 0 satisfying the same bifurcation conditions at
α = 0 is locally topologically equivalent near the origin to (2.23) for some
values of the coefficients σi.

Of course, we have to explain what a generic system means. In all the
cases we will consider, “generic” means that the system satisfies a finite
number of genericity conditions. These conditions will have the form of
nonequalities:

Ni[f ] = 0, i = 1, 2, . . . , s,

where each Ni is some (algebraic) function of certain partial derivatives
of f(x, α) with respect to x and α evaluated at (x, α) = (0, 0). Thus, a
“typical” parameter-dependent system satisfies these conditions. Actually,
the value of σ is then determined by values of Ni, i = 1, 2, . . . , s.

It is useful to distinguish those genericity conditions which are deter-
mined by the system at the critical parameter values α = 0. These condi-
tions can be expressed in terms of partial derivatives of f(x, 0) with respect
to x evaluated at x = 0, and are called nondegeneracy conditions. All the
other conditions, in which the derivatives of f(x, α) with respect to the
parameters α are involved, are called transversality conditions. The role of
these two types of conditions is different. The nondegeneracy conditions
guarantee that the critical equilibrium (singularity) is not too degenerate
(i.e., typical in a class of equiliubria satisfying given bifurcation conditions),
while the transversality conditions assure that the parameters “unfold” this
singularity in a generic way.

If a topological normal form is constructed, its bifurcation diagram clearly
has a universal meaning, since it immanently appears as a part of bifurca-
tion diagrams of generic systems exhibiting the relevant bifurcation. System
(2.16) from Example 2.7, by which we have illustrated the Andronov-Hopf
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bifurcation, corresponds to the case σ = −1 in the two-dimensional topo-
logical normal form for this bifurcation:{

ξ̇1 = βξ1 − ξ2 + σξ1(ξ21 + ξ22),
ξ̇2 = ξ1 + βξ2 + σξ2(ξ21 + ξ22).

The conditions specifying generic systems that demonstrate this bifurcation
are the following:

(H.1)
d

dα
Re λ1,2(α)

∣∣∣∣
α=0

= 0

and

(H.2) l1(0) = 0.

The first condition (transversality) means that the pair of complex-conjuga-
te eigenvalues λ1,2(α) crosses the imaginary axis with nonzero speed. The
second condition (nondegeneracy) implies that a certain combination of
Taylor coefficients of the right-hand sides of the system (up to and including
third-order coefficients) does not vanish. An explicit formula for l1(0) will
be derived in Chapter 3, where we also prove that the above system is really
a topological normal form for the Hopf bifurcation. We will also show that
σ = sign l1(0).

Remark:
There is a closely related notion of versal deformation (or universal un-

folding) for a bifurcation. First, we need to define what we mean by an
induced system.

Definition 2.17 (Induced system) The system

ẏ = g(y, β), y ∈ R
n, β ∈ R

m,

is said to be induced by the system

ẋ = f(x, α), x ∈ R
n, α ∈ R

m,

if g(y, β) = f(y, p(β)), where p : R
m → R

m is a continuous map.

Notice that the map p is not necessarily a homeomorphism, so it can be
noninvertible.

Definition 2.18 (Versal deformation) System (2.23) is a versal defor-
mation for the corresponding local bifurcation if any system (2.24), with the
equilibrium x = 0 satisfying the same bifurcation conditions and nondegen-
eracy conditions at α = 0, is locally topologically equivalent near the origin
to a system induced by (2.23) for some values of the coefficients σi.

It can be proved, in many cases, that the topological normal forms we
derive are actually versal deformations for the corresponding bifurcations
(see also Exercise 7). ♦
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2.5 Structural stability

There are dynamical systems whose phase portrait (in some domain) does
not change qualitatively under all sufficiently small perturbations.

Example 2.11 (Persistence of a hyperbolic equilibrium) Suppose
that x0 is a hyperbolic equilibrium of a continuous-time system

ẋ = f(x), x ∈ R
n, (2.25)

where f is smooth, f(x0) = 0. Consider, together with system (2.25), its
one-parameter perturbation

ẋ = f(x) + εg(x), x ∈ R
n, (2.26)

where g is also smooth and ε is a small parameter; setting ε = 0 brings
(2.26) back to (2.25). System (2.26) has an equilibrium x(ε) for all suffi-
ciently small |ε| such that x(0) = x0. Indeed, the equation defining equi-
libria of (2.26) can be written as

F (x, ε) = f(x) + εg(x) = 0,

with F (x0, 0) = 0. We also have Fx(x0, 0) = A0, where A0 is the Jacobian
matrix of (2.25) at the equilibrium x0. Since detA0 = 0, because x0 is
hyperbolic, the Implicit Function Theorem guarantees the existence of a
smooth function x = x(ε), x(0) = x0, satisfying

F (x(ε), ε) = 0

for small values of |ε|. The Jacobian matrix of x(ε) in (2.26),

Aε =
(
df(x)
dx

+ ε
dg(x)
dx

)∣∣∣∣
x=x(ε)

,

depends smoothly on ε and coincides with A0 in (2.25) at ε = 0. As already
known, the eigenvalues of a matrix that depends smoothly on a parameter
change continuously with the variation of this parameter.5 Therefore, x(ε)
will have no eigenvalues on the imaginary axis for all sufficiently small
|ε|, since it has no such eigenvalues at ε = 0. In other words, x(ε) is a
hyperbolic equilibrium of (2.26) for all |ε| small enough. Moreover, the
numbers n− and n+ of the stable and unstable eigenvalues of Aε are fixed
for these values of ε. Applying Theorem 2.2, we find that systems (2.25)
and (2.26) are locally topologically equivalent near the equilibria. Actually,
for every |ε| small, there is a neighborhood Uε ⊂ R

n of the equilibrium xε
in which system (2.26) is topologically equivalent to (2.25) in U0. In short,

5The eigenvalues vary smoothly as long as they remain simple.
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ẋ = f(x) + εg(x), x ∈ R
n, (2.26)

where g is also smooth and ε is a small parameter; setting ε = 0 brings
(2.26) back to (2.25). System (2.26) has an equilibrium x(ε) for all suffi-
ciently small |ε| such that x(0) = x0. Indeed, the equation defining equi-
libria of (2.26) can be written as

F (x, ε) = f(x) + εg(x) = 0,

with F (x0, 0) = 0. We also have Fx(x0, 0) = A0, where A0 is the Jacobian
matrix of (2.25) at the equilibrium x0. Since detA0 = 0, because x0 is
hyperbolic, the Implicit Function Theorem guarantees the existence of a
smooth function x = x(ε), x(0) = x0, satisfying

F (x(ε), ε) = 0

for small values of |ε|. The Jacobian matrix of x(ε) in (2.26),

Aε =
(
df(x)
dx

+ ε
dg(x)
dx

)∣∣∣∣
x=x(ε)

,

depends smoothly on ε and coincides with A0 in (2.25) at ε = 0. As already
known, the eigenvalues of a matrix that depends smoothly on a parameter
change continuously with the variation of this parameter.5 Therefore, x(ε)
will have no eigenvalues on the imaginary axis for all sufficiently small
|ε|, since it has no such eigenvalues at ε = 0. In other words, x(ε) is a
hyperbolic equilibrium of (2.26) for all |ε| small enough. Moreover, the
numbers n− and n+ of the stable and unstable eigenvalues of Aε are fixed
for these values of ε. Applying Theorem 2.2, we find that systems (2.25)
and (2.26) are locally topologically equivalent near the equilibria. Actually,
for every |ε| small, there is a neighborhood Uε ⊂ R

n of the equilibrium xε
in which system (2.26) is topologically equivalent to (2.25) in U0. In short,

5The eigenvalues vary smoothly as long as they remain simple.



2.5 Structural stability 69

all these facts are summarized by saying that “a hyperbolic equilibrium is
structurally stable under smooth perturbations.”

Similar arguments provide the persistence of a hyperbolic equilibrium
for all sufficiently small |ε| in a smooth system

ẋ = G(x, ε), x ∈ R
n, ε ∈ R

1,

where G(x, 0) = f(x). ✸

The parameter ε from Example 2.11 somehow measures the distance
between system (2.25) and its perturbation (2.26); if ε = 0 the systems
coincide. There is a general definition of the distance between two smooth
dynamical systems. Consider two continuous-time systems

ẋ = f(x), x ∈ R
n, (2.27)

and
ẋ = g(x), x ∈ R

n, (2.28)

with smooth f and g.

Definition 2.19 The distance between (2.27) and (2.28) in a closed region
U ⊂ R

n is a positive number d1 given by

d1 = sup
x∈U

{
‖f(x)− g(x)‖+

∥∥∥∥df(x)
dx

− dg(x)
dx

∥∥∥∥} .

The systems are ε-close in U if d1 ≤ ε.

Here ‖ · ‖ means a vector and a matrix norm in R
n, for example:

‖x‖ =
√ ∑

i=1,...,n

x2
i , ‖A‖ =

√ ∑
i,j=1,...,n

a2
ij .

Thus, two systems are close if their right-hand sides are close to each other,
together with their first partial derivatives. In this case one usually calls the
systems C1-close. Clearly, the distance between systems (2.25) and (2.26)
is proportional to |ε|: d1 = C|ε| for some constant C > 0 depending on
the upper bounds for ‖g‖ and

∥∥∥ dg
dx

∥∥∥ in U . Definition 2.19 can be applied
verbatim to discrete-time systems.

Remark:
The appearance of the first derivatives in the definition of the distance

is natural if one wants to ensure that close systems have nearby equilibria
of the same topological type (see Example 2.11). It is easy to construct a
smooth system (2.28) that is ε-close to (2.27) in the C0-distance:

d0 = sup
x∈U

{‖f(x)− g(x)‖} ,
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FIGURE 2.17. Two C0-close functions with different numbers of zeros.

and that has a totally different number of equilibria in any neighborhood
of an equilibrium of (2.27) (see Figure 2.17 for n = 1). ♦

Now we would like to define a structurally stable system, which means
that any sufficiently close system is topologically equivalent to the struc-
turally stable one. The following definition seems rather natural.

Definition 2.20 (Strict structural stability) System (2.27) is strictly
structurally stable in the region U if any system (2.28) that is sufficiently
C1-close in U is topologically equivalent in U to (2.27).

U

Lx 0

U

FIGURE 2.18. Structurally unstable orbits according to Definition 2.20.

Notice, however, that systems having hyperbolic equilibria on the bound-
ary of U , or hyperbolic cycles touching the boundary (see Figure 2.18),
are structurally unstable in accordance with this definition, since there are
small system perturbations moving such equilibria out of U , or pushing
such cycles to lie (partially) outside of U . There are two ways to handle
this difficulty.

The first is to consider dynamical systems “in the whole phase space”
and to forget about any regions. This way is perfect for dynamical systems
defined on a compact smooth manifold X. In such a case, the “region U”
in Definition 2.20 (as well as in the definition of the distance) should be
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substituted by the “compact manifold X.” Unfortunately, for systems in
R
n this easily leads to complications. For example, the distance between

many innocently looking systems may be infinite if the supremum in d1 is
taken over the whole of R

n. Therefore, the second way out is to continue to
work with bounded regions but to introduce another definition of structural
stability.

Definition 2.21 (Andronov’s structural stability) A system (2.27) de-
fined in a region D ⊂ R

n is called structurally stable in a region D0 ⊂ D
if for any sufficiently C1-close in D system (2.28) there are regions U, V ⊂
D, D0 ⊂ U such that (2.27) is topologically equivalent in U to (2.28) in V
(see Figure 2.19).

0

D

D
V

U

FIGURE 2.19. Andronov’s structural stability.

A parallel definition can be given for discrete-time systems. If (2.27) is
structurally stable in D0 ⊂ D, then it is structurally stable in any region
D1 ⊂ D0. There are cases when Definitions 2.20 and 2.21 actually coincide.

Lemma 2.1 If a system is structurally stable in a region D0 with the
boundary B0 and all its orbits point strictly inside B0, then it is strictly
structurally stable in U = D0. ✷

The following classical theorem gives necessary and sufficient conditions
for a continuous-time system in the plane to be structurally stable.

FIGURE 2.20. Structurally unstable connecting orbits in planar systems.
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Theorem 2.5 (Andronov & Pontryagin [1937]) A smooth dynamical
system

ẋ = f(x), x ∈ R
2,

is structurally stable in a region D0 ⊂ R
2 if and only if

(i) it has a finite number of equilibria and limit cycles in D0, and all of
them are hyperbolic;

(ii) there are no saddle separatrices returning to the same saddle or con-
necting two different saddles in D0 (see Figure 2.20). ✷

Remark:
Actually, in their original paper of 1937, Andronov and Pontryagin con-

sidered systems with analytic right-hand sides in a region D0 ⊂ R
2 bounded

by a (piecewise) smooth curve. They also assumed that all orbits point
strictly inside the region, so they were able to use Definition 2.20. Later,
Definition 2.21 was introduced and this restriction on the behavior on the
boundary was left out. Moreover, they proved that the homeomorphism h
transforming the phase portrait of a perturbed system in D0 into that of
the original system can be selected C0-close to the identity map id(x) = x.
♦

This theorem gives the complete description of structurally stable sys-
tems on the plane. It is rather obvious, although it has to be proved, that
a typical (generic) system on the plane satisfies Andronov-Pontryagin con-
ditions and is, thus, structurally stable. If one considers the bifurcation
diagram of a generic planar system depending on k parameters, these are
structurally stable systems that occupy k-dimensional open regions in the
parameter space.

One can ask if a similar theorem exists for n-dimensional systems. The
answer is “no.” More precisely, one can establish sufficient conditions (called
Morse-Smale conditions, similar to those in Theorem 2.5) for a continuous-
time system to be structurally stable. Nevertheless, there are systems,
which do not satisfy these conditions, that are structurally stable. In par-
ticular, structurally stable systems can have an infinite number of peri-
odic orbits in compact regions. To understand this phenomenon, consider a
continuous-time system R

3. Suppose that there is a two-dimensional cross-
section Σ on which the system defines a Poincaré map generating a Smale
horseshoe (see Chapter 1 and Example 2.7 in this chapter). Then, the sys-
tem has an infinite number of saddle cycles in some region of the phase
space. A C1-close system will define a C1-close Poincaré map on Σ. The
horseshoe will be slightly deformed, but the geometrical construction we
have carried out in Chapter 1 remains valid. Thus, a complex invariant
set including an infinite number of saddle cycles will persist under all suf-
ficiently small perturbations. A homeomorphism transforming the corre-
sponding phase portraits can also be constructed.
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Moreover, it is possible to construct a system that has no close struc-
turally stable systems. We direct the reader to the literature cited in this
chapter’s appendix.

2.6 Exercises

(1) Determine which of the following linear systems has a structurally
stable equilibrium at the origin, and sketch its phase portrait:

(a)
{

ẋ = x− 2y,
ẏ = −2x + 4y;

(b)
{

ẋ = 2x + y,
ẏ = −x;

(c)
{

ẋ = x + 2y,
ẏ = −x− y.

(2) The following system of partial differential equations is the FitzHugh-
Nagumo caricature of the Hodgkin-Huxley equations modeling the nerve
impulse propagation along an axon:

∂u

∂t
=

∂2u

∂x2 − fa(u)− v,

∂v

∂t
= bu,

where u = u(x, t) represents the membrane potential, v = v(x, t) is a
“recovery” variable, fa(u) = u(u − a)(u − 1), 1 > a > 0, b > 0,−∞ < x <
+∞, and t > 0.
Traveling waves are solutions to these equations of the form

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x + ct,

where c is an a priori unknown wave propagation speed. The functions U(ξ)
and V (ξ) are the wave profiles.

(a) Derive a system of three ordinary differential equations for the profiles
with “time” ξ. (Hint: Introduce an extra variable: W = U̇ .)

(b) Check that for all c > 0 the system for the profiles (the wave system)
has a unique equilibrium with one positive eigenvalue and two eigenvalues
with negative real parts. (Hint: First, verify this assuming that eigenvalues
are real. Then, show that the characteristic equation cannot have roots
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on the imaginary axis, and finally, use the continuous dependence of the
eigenvalues on the parameters.)

(c) Conclude that the equilibrium can be either a saddle or a saddle-
focus with a one-dimensional unstable and a two-dimensional stable in-
variant manifold, and find a condition on the system parameters that de-
fines a boundary between these two cases. Plot several boundaries in the
(a, c)-plane for different values of b and specify the region corresponding to
saddle-foci. (Hint: At the boundary the characteristic polynomial h(λ) has
a double root λ0 : h(λ0) = h′(λ0) = 0.)

(d) Sketch possible profiles of traveling impulses in both regions. (Hint:
An impulse corresponds to a solution of the wave system with

(U(ξ), V (ξ),W (ξ)) → (0, 0, 0)

as ξ → ±∞. See Chapter 6 for further details.)

(3) Prove that the system {
ẋ1 = −x1,
ẋ2 = −x2,

is locally topologically equivalent near the origin to the system{
ẋ1 = −x1,
ẋ2 = −2x2.

(Hint: Mimic the proof of Example 2.1 without introducing polar coordi-
nates.) Are the systems diffeomorphic?

(4) (Diffeomorphic limit cycles) Show that for diffeomorphic continu-
ous-time systems, corresponding limit cycles have coinciding periods and
multipliers. (Hint: Use the fact that variational equations around corre-
sponding cycles (considered as autonomous systems with an extra cyclic
variable) are diffeomorphic.)

(5) (Orbital equivalence and global flows)
(a) Prove that the scalar system

dx

dt
= x2, x ∈ R

1,

having solutions approaching infinity within finite time, and thus defining
only local flow ϕt : R

1 → R
1, is orbitally equivalent to the scalar system

dx

dτ
=

x2

1 + x2 , x ∈ R
1,

having no such solutions and therefore defining a global flow ψτ : R
1 → R

1.
How are t and τ related?
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(b) Prove that any smooth system ẋ = f(x), x ∈ R
n, is orbitally equiva-

lent in R
n to a smooth system defining a global flow ψτ on R

n. (Hint: The
system

ẋ =
1

1 + ‖f(x)‖f(x),

where ‖ · ‖ is the norm associated with the standard scalar product in R
n,

does the job.)

(6) (One-point parametric portrait) Construct an autonomous system
of differential equations in R

3 depending on two parameters (α, β) and
having topologically equivalent phase portraits for all parameter values
except (α, β) = (0, 0). (Hint: Use the idea of Example 2.9. At α = β = 0,
the system should have two saddle points with one-dimensional unstable
and one-dimensional stable manifolds with coinciding branches (see Figure
2.21).)

FIGURE 2.21. Exercise 6.

(7) (Induced systems) Show that the scalar system

ẏ = βy − y2,

which exhibits the transcritical bifurcation, is topologically equivalent (in
fact, diffeomorphic) to a system induced by the system

ẋ = α− x2,

which undergoes the fold bifurcation. (Hint: See Arrowsmith & Place [1990,
p.193].)

(8) (Proof of Lemma 2.1)
(a) Prove that a smooth planar system ẋ = f(x), x ∈ R

2, is topologically
equivalent (in fact, diffeomorphic) in a region U , that is, free of equilibria
and periodic orbits and is bounded by two orbits and two smooth curves
transversal to orbits, to the system{

ẏ1 = 1,
ẏ2 = 0,
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FIGURE 2.23. Saddles are topologically equivalent.

in the unit square V = {(y1, y2) : |y1| ≤ 1, |y2| ≤ 1} (see Figure 2.22).
(b) Generalize this result to n-dimensional systems and prove Lemma

2.1.
(c) Prove, using part (a), that two hyperbolic saddle points on the plane

have locally topologically equivalent phase portraits. (Hint: See Figure 2.23;
an explicit map providing the equivalence is constructed in Chapter 6.)
Where is the differentiability lost?

2.7 Appendix: Bibliographical notes

The notion of topological equivalence of dynamical systems appeared in
the paper by Andronov & Pontryagin [1937] devoted to structurally stable
systems on the plane. It is extensively used (among other equivalences) in
singularity theory to classify singularities of maps and their deformations
(Thom [1972], Arnold, Varchenko & Guseyn-Zade [1985], Golubitsky &
Schaeffer [1985]).

The local topological equivalence of a nonlinear dynamical system to its
linearization at a hyperbolic equilibrium was proved by Grobman [1959] and
Hartman [1963]. See Hartman [1964] for details. Local topological equiva-
lence of a map near a hyperbolic fixed point to its linearization has been
established by Grobman and Hartman as a by-product of their proofs of
the corresponding theorem in the continuous-time case (see also Nitecki
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[1971]). A constructive proof of the topological equivalence of two linear
systems with n0 = 0 and the same n− and n+ can be found in Arnold
[1973] and Hale & Koçak [1991].

The Local Stable Manifold Theorem for differential equations originated
in works by Hadamard [1901] and Perron [1930]. Complete proofs and gen-
eralizations are given by Kelley [1967]; Hirsch, Pugh & Shub [1977] (see also
Irwin [1980]). The Local Stable Manifold Theorem for maps is actually the
main technical tool used to prove the relevant theorem for differential equa-
tions. Therefore, its proof can be found in the cited literature, for example,
in Hartman [1964] or Nitecki [1971]. The latter reference also contains a
proof that the stable and unstable sets of a hyperbolic fixed point are im-
ages of R

n
− and R

n
+ under immersion.

The complex structure generated by the transversal intersection of the
stable and unstable manifolds of a hyperbolic fixed point was discovered
by Poincaré [1892,1893,1899] while analyzing area-preserving (conserva-
tive) maps appearing in celestial mechanics. Further analysis of this phe-
nomenon in the conservative case was undertaken by Birkhoff [1935], with
particular emphasis to the statistical properties of corresponding orbits.
The nonconservative case was studied by Smale [1963], Neimark [1967],
and Shil’nikov [1967b]. A nice exposition of this topic is given by Moser
[1973].

There are two main approaches to studying bifurcations in dynamical
systems. The first one, originating in the works by Poincaré, is to analyze
the appearance (branching) of new phase objects of a certain type (equi-
libria or cycles, for example) from some known ones when parameters of
the system vary. This approach led to the development of branching theory
for equilibrium solutions of finite- and infinite-dimensional nonlinear equa-
tions (see, e.g, Văınberg & Trenogin [1974], and Chow & Hale [1982]). The
approach also proved to be a powerful tool to study some global bifurca-
tions (see the bibliographical notes in Chapter 6). The second approach,
going back to Andronov [1933] and reintroduced by Thom [1972] in order
to classify gradient systems ẋ = −grad V (x, α), is to study rearrangements
(bifurcations) of the whole phase portrait under variations of parameters.
In principle, the branching analysis should precede more complete phase
portrait study, but there are many cases where complete phase portraits
are unavailable and studying certain solutions is the only way to get some
information on the bifurcation.

Bifurcations of phase portraits of two-dimensional dynamical systems
have been studied in great detail by Andronov and his co-workers in 1930-
1950 and summarized in the classical book whose English translation is
available as Andronov, Leontovich, Gordon & Maier [1973]. In his fa-
mous lectures, Arnold [1972] first applied many ideas from singularity the-
ory of differentiable maps to dynamical systems (a similar approach was
developed by Takens [1974a]). The notions of topological equivalence of
parameter-dependent systems (families), versal deformations for local bi-
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furcations, as well as many original results, were first presented in Arnold’s
lectures and then in the book by Arnold [1983]. Notice that in the literature
in English versal deformations are often called universal unfoldings follow-
ing terminology from singularity theory. A fundamental survey of bifurca-
tion theory, including results on global bifurcations, is given by Arnol’d,
Afraimovich, Il’yashenko & Shil’nikov [1994].

Structurally stable two-dimensional ODE systems were studied by An-
dronov & Pontryagin [1937] under the name coarse (or rough) systems.
Actually, they included the requirement that the homeomorphism trans-
forming the phase portraits be close to the identity. Peixoto [1962] proved
that a typical system on a two-dimensional manifold is structurally stable.
To discuss “typicality” one has to specify a space D of considered dynami-
cal systems. Then, a property is called typical (or generic) if systems from
the intersection of a countable number of open and dense subsets of D
possess this property (see Wiggins [1990] for an introductory discussion).
A class of structurally stable, multidimensional dynamical systems (called
Morse-Smale systems) has been identified Smale [1961, 1967]. Such systems
have only a finite number of equilibria and cycles, all of which are hyper-
bolic and have their stable and unstable invariant manifolds intersecting at
nonzero angles (transversally). There are structurally stable systems that
do not satisfy Morse-Smale criteria, in particular, having an infinite num-
ber of hyperbolic cycles [Smale 1963]. Moreover, structural stability is not a
typical property for multidimensional dynamical systems, and structurally
stable systems are not dense in a space D of smooth dynamical systems
[Smale 1966]. The interested reader is referred to Nitecki [1971] and Arnold
[1983] for more information.
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A class of structurally stable, multidimensional dynamical systems (called
Morse-Smale systems) has been identified Smale [1961, 1967]. Such systems
have only a finite number of equilibria and cycles, all of which are hyper-
bolic and have their stable and unstable invariant manifolds intersecting at
nonzero angles (transversally). There are structurally stable systems that
do not satisfy Morse-Smale criteria, in particular, having an infinite num-
ber of hyperbolic cycles [Smale 1963]. Moreover, structural stability is not a
typical property for multidimensional dynamical systems, and structurally
stable systems are not dense in a space D of smooth dynamical systems
[Smale 1966]. The interested reader is referred to Nitecki [1971] and Arnold
[1983] for more information.



3
One-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

In this chapter we formulate conditions defining the simplest bifurcations
of equilibria in n-dimensional continuous-time systems: the fold and the
Hopf bifurcations. Then we study these bifurcations in the lowest possible
dimensions: the fold bifurcation for scalar systems and the Hopf bifurca-
tion for planar systems. Chapter 5 shows how to “lift” these results to
n-dimensional situations.

3.1 Simplest bifurcation conditions

Consider a continuous-time system depending on a parameter

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

where f is smooth with respect to both x and α. Let x = x0 be a hyper-
bolic equilibrium in the system for α = α0. As we have seen in Chapter 2,
under a small parameter variation the equilibrium moves slightly but re-
mains hyperbolic. Therefore, we can vary the parameter further and mon-
itor the equilibrium. It is clear that there are, generically, only two ways
in which the hyperbolicity condition can be violated. Either a simple real
eigenvalue approaches zero and we have λ1 = 0 (see Figure 3.1(a)), or a
pair of simple complex eigenvalues reaches the imaginary axis and we have
λ1,2 = ±iω0, ω0 > 0 (see Figure 3.1(b)) for some value of the parameter. It
is obvious (and can be rigorously formalized) that we need more parameters
to allocate extra eigenvalues on the imaginary axis. Notice that this might
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