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1.1

Introduction

What you will know after the lecture

to operate with infinite sequences
to sum (some) infinite sequences
to antiderive (some/a class of) one-variable functions

to apply antiderivation (e.g. to calculate an area given by a function, a surface of a rotating body,

a length of a curve, ...)
to apply differential calculus in more dimensions
to locate local extrema of functions of two or more variables

to locate global extrema of functions of two or more variables with respect to a given domain



Literature for further study:

Introduction to Real Analysis by Prof. W. Trench
(http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF)
Sections 2—4 are taken from the Calculus Bible.

Section 6 follows lecture notes of Prof. J. Danécek.



2 INFINITE SERIES

2.1 Sequences

Definition 8.1.1 An infinite sequence (or sequence) is a function, say f, whose domain is the set of
all integers greater than or equal to some integer m. If n is an integer greater than or equal to m and

f(n) = a,, then we express the sequence by writing its range in any of the following ways:
L fm), flm+ 1), f(m+2),...

2. Ams Am+1, Am425 - - -

3. {f(n) :n>m}

44,
d. {an}zo:m
Definition 8.1.2 A sequence {a,},,, is said to converge to a real number L (or has limit L) if for

each € > 0 there exists some positive integer M such that |a, — L| < € whenever n > M. We write,
lim a,=L or a,— Lasn— oo.

n—oo

If the sequence does not converge to a finite number L, we say that it diverges.
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Theorem 8.1.1 Suppose that ¢ is a positive real number,

quences. Then

1. lim (ca,) = ¢ lim a,
n—,oo n—o0

2. lim (a, + b,) = lim a, + lim b,

3. lim (a, — b,) = lim a, — lim b,
n—00 n—00 n—o00

4. lim (ayb,) = lim a, lim b,
n—oo n—oo n—ro0o

5. lim a,/b, = lim a,/ lim a,, if limb,, # 0.

& g fan)” = {1y, on)

7. lim (e™) = elimn—oo dn
n— 00

8. Suppose that a,, < b, < ¢, for all n > m and

{an}o2,, and {b,}o°, are convergent se-

lim a, = lim ¢, = L.

n—oo n—oo
Then
lim b,, = L.

n—oo



2.2 Monotone Sequences
Definition 8.2.1 Let {a,}>2,. be a given sequence. Then {a,}>°,  1is said to be
(a) increasing if a,, < a1 for all n > m;
(b) decreasing if a,, + 1 < a, for all n > m;
(c¢) nondecreasing if a,, < a,; for all n > m;
(d) nonincreasing if a, 11 < a, for all n > m;
(e) bounded if a < a, < b for some constants a and b and all n > m;
(f) monotone if {a,}>2 . is increasing, decreasing, nondecreasing or nonincreasing.

(g) a Cauchy sequence if for each € > 0 there exists some M such that |a,, — a,,| < & whenever
ny > M and ny > M.

Theorem 8.2.1

(a) A monotone sequence converges to some real number if and only if it is a bounded sequence.

(b) A sequence is convergent if and only if it is a Cauchy sequence.



2.3 Infinite Series

Definition 8.3.1 Let {a,}:2, be a given sequence. Let

S1 = Ay,
S9 = aj + as,

53:a1—|—a2+a3,

n
Sp = E Qe
k=1

for all natural number n. If the sequence {s,}>>, converges to a finite number L, then we write

[e.9]

L=a+ay+ag---= E a
k=1
[o¢]
We call E ay an infinite series and write
k=1
[o¢] n
L:a1+a2+a3-..: E ar = lim E ak:L.
n—oo
k=1 k=1

10



We say that L is the sum of the series and the series converges to L. If a series does not converge to a
finite number, we say that it diverges. The sequence {s,}>2; is called the sequence of the n-th partial

sums of the series.

11



Theorem 8.3.1 Suppose that a and r are real numbers and a # 0. Then the geometric series

a

2 k
a ar ar ce. = ar =
+ar +ar’ + ’;_0 T

if the quotioent r satisfies |r| < 1.
The geometric series diverges if || > 1.
Proof. For each natural number n, let

n—1

Sp,=a-+ar—+...+ar

On multiplying both sides by r, we get

ar+ar’ + ... +ar" "+ ar”

rS, =
Sp— TS, = a—ar"
(I1—=7r)s, = a(l—1")
a a
Sp = — r’.
1—r 1-—17
If |r] < 1, then
I R T
oo 1—r 1—17rnoc 1—r

If |r] > 1, then lim " is not finite and so the sequence {sn} >, of n-th partial sums diverges.
n—oo

If r =1, then s, = na and lim na is not a finite number.
n—oo

This completes the proof of the theorem.

12



oo

Theorem 8.3.2 (Divergence Test) If the series Zak converges, then lim a, = 0. If lim a, # 0,
n—,oo

n—o0
k=1
then the series diverges.

Proof. Suppose that the series converges to L. Then

n n—1 n n—1
lim a,, = lim E ay E a, | = lim E ap — lim E a,=L—L=0.
n—roo n—roo n—oo n—oo

k=1 k=1 k=1 k=1

The rest of the theorem follows from the preceding argument. This completes the proof of this theorem.

13



Theorem 8.3.3 (The Integral Test) Let f be a function that is defined, continuous and decreasing
on [1,00) such that f(z) > 0 for all z > 1. Then

Zf(n) and /100 f(z)dx

either both converge or both diverge.
Proof. Suppose that f is decreasing and continuous on [1,00), and f(x) > 0 for all x > 1. Then for

all natural numbers n, we get,

n+1
St [ sy )
- 1
It follows that,

S < [ s <y
k=2 1 k=1

Since f(1) is a finite number, it follows that

Zf(n) and /100 f(x)dx

k=1

either both converge or both diverge. This completes the proof of the theorem. [ |

14



Theorem 8.3.4 Suppose that p > 0. Then the p-series

o0

1

npP
n=1

converges if p > 1 and diverges if 0 < p < 1. In particular, the harmonic series

o0

1
2

diverges.

Proof goes via the Integral Test.

15



2.4 Series with Positive Terms

Theorem 8.4.1 (Algebraic Properties) Suppose that Zak and Zbk are convergent series and

k=1 k=1
¢ > 0. Then

1. ak—i-bk Zak—l—Zbk

k=1 k=1 k=1
B TEINES S 3t

k=1 k=1 k=1
3 Z cap = ¢ Z ay

k=1 k=1
4. If m is any natural number, then the series Z ¢, and Z ¢y either both converge or both diverge.

k=1 k=m

16



Theorem 8.4.2 (Comparison Test) Suppose that 0 < a,, < b, for all natural numbers n > 1.

n o
(a) If there exists some M such that Z ap < M, for all natural numbers n, then Z @), CONVerges.
k=1 k=1
If there exists no such M, then the series diverges.

(b) If Z b converges, then Z ay, converges.

k=1 k=1

(c) If Z ay, diverges, then Z by diverges.
k=1 k=1

(d) If ¢, > 0 for all natural numbers n, and

An

Iim —=1L, 0<L < o0,
n—00 Cp
oo (o]
then the series Z ay and Z ¢ either both converge or both diverge.
k=1 k=1

17



Theorem 8.4.3 (Ratio Test) Suppose that 0 < a,, for every natural number n and

. an+1
lim

=T.
n—00  (y,

oo
Then the series Z a,

n=1

(a) converges if r < 1;

(b) diverges if r > 1;

(¢) may converge or diverge if r = 1; the test fails.
Theorem 8.4.4 (Root Test) Suppose that 0 < a,, for each natural number n and
1/n

lim (a,)
n—,oo

=T.

o0

Then the series Z an,

n=1

(a) converges if r < 1;
(b) diverges if r > 1;

(c) may converge or diverge if r = 1; the test fails.

18



2.5 Alternating Series

Definition 8.5.1 Suppose that for each natural number n, b, is positive or negative. Then the series

(o]
E by is said to converge

k=1
(a) absolutely if the series Z |b| converges;
k=1

(b) conditionally if the series Z by converges but Z |bx| converges diverges.
k=1 k=1

Theorem 8.5.1 If a series converges absolutely, then it converges.

19



Definition 8.5.2 Suppose that for each natural number n, a, > 0. Then an alternating series is a

series that has one of the following two forms:

(a) ap —ag+az— -+ (=1)"Ma, + - = Z(_1>k+1ak
k=1

(b) —a; +as—az+---+ (=) "a, + - = Z(_1>kak-
k=1

Theorem 8.5.2 Suppose that a, > a,.1 > 0 for all natural numbers m, and lim a, = 0. Then
n—oo

NE

(a)

(—=1)"a, and Z(—l)"“an both converge.
n=1

Il
—

n

(b) Z(—Ukﬂak - Z(—l)kﬂak < Qpy1, for all n;
k=1 k=1

(c) Z(—l)kak - Z(—l)kak < Qpy1, for all n;
k=1 k=1

20



Theorem 8.5.3 Consider a series {a}5—,. Let

Qp41
Qp,

lim

n—oo

=L, lim |a,|"" = M.

n—oo

(a) If L <1, then the series {ay}ro; converges absolutely.
(b) If L > 1, then the series {a}re; does not converge absolutely.
(c) If M < 1, then the series {ay};, converges absolutely.
(b) If M > 1, then the series {ay};>; does not converge absolutely.

(e) If L =1or M =1, then the series {a};; may or may not converge absolutely.

21



2.6 Power Series

Definition 8.6.1 If ag, a1, as, ... is a sequence of real numbers, then the series

Z ap(z — )"

is called a power series in x.

A real number c is called the centre of power series.

A positive number 7 is called the radius of convergence and the interval (c—r, c+r) is called the interval
of convergence of the power series if the power series converges absolutely for all z in (¢ —r, ¢+ ) and

diverges for all x such that |z —¢| > 7.

oo
The end point © = ¢ + r is included in the interval of convergence if Z a,r® converges.

k=0
0

The end point © = ¢ — r is included in the interval of convergence if the series Z(—l)kakrk converges.
k=0

If the power series converges only for x = ¢, then the radius of convergence is defined to be zero.

If the power series converges absolutely for all real x, then the radius of convergence is defined to be

Q.
oo 00

Theorem 8.6.1 If the series Zanx” converges for x = r # 0, then the series Zanm” converges

n=0 n=0
absolutely for all numbers x such that |z| < |r|.

22



o0 [e.o]

Theorem 8.6.2 If the series Z a,(z—c)" converges for some x—c = r # 0, then the series Z an(x—c)"
n=0 n=0
converges absolutely for all = such that |z —¢| < |r|.

23



o0

Theorem 8.6.3 Let Z a,x" be any power series. Then exactly one of the following three cases is true.
n=0

(i) The series converges only for z = 0.
(ii) The series converges for all = € R.

(iii) There exists a number R such that the series converges for all  with |z| < R and diverges for all

x with |z| > R.

Theorem 8.6.4 Let Z a,(x — ¢)" be any power series. Then exactly one of the following three cases

. n=0
1s true.

(i) The series converges only for z = c.
(ii) The series converges for all = € R.

(iii) There exists a number R such that the series converges for all x with |x —¢| < R and diverges for

all z with |z —¢| > R.

24



o0 o0

Theorem 8.6.5 If R > 0 and the series Z a,x" converges for |z| < R, then the series Znanx”_l,
n=0 n=0
o0

obtained by term-by-term differentiation of Z a,x" converges absolutely for |z| < R.

n=0
Theorem 8.6.6 If R > 0 and the series Z an(x — ¢)" converges for all x such that |z —a| < R, then
n=0
the series Z a,(x — ¢)" may be differentiated with respect to # any number of times and each of the
n=0

differential series converges for all x such that |z — a| < R.

Theorem 8.6.7 Suppose that R > 0 and f(x) = Z a,x” and R is radius of convergence of the series
n=0

Z anz". Then f(x) is continuous for all z such that |z| < R.

o0

Theorem 8.6.8 Suppose that R > 0 and f(x) = Z a,x" and R is radius of convergence of the series
n=0

25



(o]
Z a,x". For each = such that |z| < R, we define

n=0

F(z) = /0 " Fdt.

Then, for each x such that |z| < R, we get

e :En+1

n=0
Theorem 8.6.9 Suppose that f(x) = Z a,x” for all |x| < R, where R > 0 is the radius of convergence
n=0

oo
of the series Z a,z". Then f(x) has continuous derivatives of all orders for |z| < R that are obtained

n=0
o0
by successive term-by-term differentiations of E apx"
n=0

26



Definition 8.6.2 The radius of convergence of the power series Z an(x —c)"
n=0

(a) zero, if the series converges only for = = a;

(b) r, if the series converges absolutely for all « such that |z — a| < r and diverges for all z such that

|z —a| >r.
(c) oo, if the series converges absolutely for all real number z.

If the radius of convergence of the power series in (z —a) is 7, 0 < r < oo, then the interval of

convergence of the series is (a — r,a 4+ r). The end points = a 4+ r or x = a — r are included in the

[ee] (o]
interval of convergence if the corresponding series E a,r" or E (—=1)"a,r"™ converges, respectively.
n=0 n=0

If r = oo, then the interval of convergence is (—oo, 00).

27



2.7 Taylor Polynomials and Series

Theorem 8.7.1 (Taylor’s Theorem) Suppose that f, f' -+, f (+1) are all continuous for all z such

that |z — a] < R. Then there exists some ¢ between a and x such that
f(x) = Pu(z) + R()

where
(z —a)"

Pu(w) =) fP(a) " Ru(x) = f"(¢)
k=0 ’

(x —a)™t!

(n+1)!

The polynomial P,(x) is called the n-th degree Taylor polynomial approximation of f. The term R, (x)

is called the Lagrange form of the remainder.

28



Theorem 8.7.2 (Binomial Series) If m is a real number and |z| < 1, then

Zm(m—1)---(m—k+1)

m __ k _
(1+2x) —1—|—Z o x —1—|—mx+Tx—|— 3

This series is called the binomial series. If we use the notation

(72) SLUEDUEIER!

then <TZ> is called the binomial coefficient and

29

m(m—1) , m(m—1)(m—2) 4

X

4+,



Theorem 8.7.3 The following power series expansions of functions are valid.

L(I—2)'=14> 2" and (1+2) "' =14+ (-D%* |z2[<1L
k=1

o0 k o0
2. =1+ Z % and e *"=1+ Z(—l)kx— |z] < 0.
k=1 "

k!’
k=1
i N x2k3+1
3.sinz =) (—1)"——=, |z|<o00.
|
— (2k +1)!
s L a2
4. cosz = Z(—l) oI |z| < o0.
k=0 '
i x2k3—1
5. sinhz = , o] < o0
|
— (2k +1)!
6. coshx = —,  |z] < 0.
'7
— (2k)!
% s
T.In(l+z)=> (-1) i —1l<z<1.

30



1—i—m

8. =
1—x

9. arctanz = Z(—l)k

10. arcsinx = Z (_

00
=0
00

k=0

k=0

(

1/2
k

2k+1

2k+ 2k + 1)

1.21@-‘,—1

2k + 1)V

—1l<x<l.

1.21@-‘,—1

) G 1
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3 The Definite Integral
]

3.1 Area Approximation

Example 5.1.1 Find the area bounded by the graph of the function y =4, y =0, z =0, x = 3.
[graph]

From geometry, we know that the area is the height 4 times the width 3 of the rectangle.

Area = 12.

Example 5.1.2 Find the area bounded by the graphs of y =4z, y =0, x =0, x = 3.

[graph]

From geometry, the area of the triangle is 1/2 times the base, 3, times the height, 12.

Area = 18.

Example 5.1.3 Find the area bounded by the graphs of y =2z, y =0, x =1, x = 4.

[graph]

The required area is covered by a trapezoid. The area of a trapezoid is 1/2 times the sum of the parallel

sides times the distance between the parallel sides.

Area = (2+8)(3)/2 = 15.

32



Example 5.1.4 Find the area bounded by the curves y = V4 — 22, y =0, 2 = =2, x = 2.

[graph]

By inspection, we recognize that this is the area bounded by the upper half of the circle with center at
(0, 0) and radius 2. Its equation is

4y =dory=vVi—22 —2<z<2

Again from geometry, we know that the area of a circle with radius 2 is 7r? = 47. The upper half of
the circle will have one half of the total area. Therefore, the required area is 2.

Example 5.1.5 Approximate the area bounded by y = 2, y =0, = 0, and = = 3.

Given that the exact area is 9, compute the error of your approximation.
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3.2 The Definite Integral

Let f be a function that is continuous on a bounded and closed interval [a,b]. Let p = {a = 2y < 1 <

x9 < -+ < x, = b} be a partition of [a, b], not necessarily equally spaced. Let
m; =min{f(z) 1z, <z <a;},i=1,2,...,m

M; =max{f(x): 2,1 <z <z}, i=1,2...,m

Axi=x;, —x;_1,1=1,2,...,n;

A =max{Ax; : i=1,2,...,n};

L(p) = miAzy + moAxg + - - - + myAxy;

U(p) = MiAx; + MyAxy + -+ - + M, Ax,.

We call L(p) the lower Riemann sum. We call U(p) the upper Riemann sum.
Clearly L(p) < U(p), for every partition.

34



Let
Lf =inf{L(p) : p is a partition of [a,b]}, Uf =sup{U(p) : pis a partition of [a, b]}.

Definition 5.2.1 If f is continuous on [a,b] and Lf = U f = I, then we say that:
(i) f is integrable on [a, b];
(ii) the definite integral of f(z) from x =a to x = b is I;

(iii) I is expressed, in symbols, by the equation

1= [ s,

(iv) the symbol / 7 is called the “integral sign”; the number “a” is called the “lower limit”; the
number “b” is called the “upper limit”; the function “f(x)” is called the “integrand”; and the

variable “x” is called the (dummy) “variable of integration”.

(v) If f(z) > 0 for each z in [a,b], then the area, A, bounded by the curves y = f(z), y =0, z = a
and x = b, is defined to be the definite integral of f(z) from = a to # = b. That is,

A:/abf(x)dx.
35



(vi) For convenience, we define

/aaf(fr)d:r 0.

/baf(w)dx :—/abf(x)dx.

Theorem 5.2.1 If a function f is continuous on a closed and bounded interval [a, b], then f is integrable

on [a,b].

36



Theorem 5.2.2 (Linearity) Suppose that f and g are continuous on [a,b] and ¢; and ¢y are two

arbitrary constants. Then

/ab(f(w) +g(x))dz = /abf(a:) dz +/abg(x) da

/ab(f(x) —g(z))dz = /abf(a:) dz — /abg(gc) dr
(iii)
/abclf(w)dw :cl/abf(x)dx, /abcgg(x)dx = Cz/abg(x)dx,

/ab(qf(x) +cag(z))dz = ¢ /abf(m) dz + ¢ /abg(:r) da

37



Theorem 5.2.3 (Additivity) If f is continuous on [a,b] and a < ¢ < b, then

/abf(x)dx :/acf(x)dw —i—/cbf(w)dx

Theorem 5.2.4 (Order Property) If f and g are continuous on [a, b] and f(z) < g(z) for all x € [a, b],

then ) )
/a fle)dz < / g(x)do

Theorem 5.2.5 (Mean Value Theorem for Integrals) If f is continuous on [a, b], then there exists

/f F()b—a).

Definition 5.2.2 The number f(c) given in Theorem 5.2.6 is called the average value of f on |a, b,
denoted fu,[a,b]. That is

some point ¢ € [a, b] such that

favla, b] =

38



Theorem 5.2.6 (Fundamental Theorem of Calculus, First Form) Suppose that f is continuous

:/;f(t)dt

for each x € [a,b]. Then g(z) is continuous on [a,b], differentiable on (a,b) and for all x € (a,b),

¢'(x) = f(z). That is )
& ([ 1) = s,

Theorem 5.2.7 (Fundamental Theorem of Calculus, Second Form) If f and g are continuous

on a closed and bounded interval [a,b] and ¢'(z) = f(x) on (a,b), then

/ f(x)dz = g(b) — g(a).

on some closed and bounded interval [a, b] and

We use the notation:

Theorem 5.2.8 (Leibniz Rule) If a(z) and 5(z) are differentiable for all z and f is continuous for
all z, then

dx a(z)

B(z)
@ (/ £(t) dt) = [(B(@)) - B'(x) ~ f(a(@)) - o/(x).

39



Example 5.2.1 [page 201] Compute each of the following

represented by each integral:

4
(z)/ 2 dz
0
/2
(i) /
—7/2
/3
(v)/ tan x dx
0

/4
(vit) / secx dx
w/4

cosz dx

1
(m)/ sinh x dz
0

definite integrals and sketch the area

(17) / sinx dz
0
10
(1v) / e’ dz
0
w/2
wi) [
/6
3 /4
(vidi) /
w/4

1
(m)/ cosh x dx
0

cot xdz

cscx dx

We note that each of the functions in the integrand is positive on the respective interval of integration,
and hence, represents an area. In order to compute these definite integrals, we use the Fundamental
Theorem of Calculus, Theorem 5.2.2. As in Chapter 4, we first determine an anti-derivative g(x) of the

integrand f(x) and then use

(/f@szﬂw—ﬂw
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Example 5.2.2 Evaluate each of the following integrals:

(i) /1 wédx
(idd) /0 ™ os(3z) da
() /0 " ginh(4) de

41

w/2
(17) /0 sin(2z) dz
(iv) /2(m4 —322+2x —1)de

(vi) /0 4 cosh(2) dz



Basic List of Indefinite Integrals:

/

/sinmdm = —cosx+c

/
[
Je

z2"dx =

X

n+1

sinhxdx = coshx + ¢

=e

+c

+c

dr = arctgz + ¢

n €N, x #0,

neRn+#—-1,2>0

42

dz =In|z|+¢, x#0

8=

coszdxr =sinz + ¢
coshzdz =sinhxz + ¢

dx = arcsinx + ¢

V1— a2

/
/
/
=



3.3 Integration by Substitution

Many functions are formed by using compositions. In dealing with a composite function it is useful to
change variables of integration. It is convenient to use the following differential notation:

If u = g(x), then du = ¢'(x)dz.

The symbol “du” represents the “differential of u,” namely, g(z)dz.

Theorem 5.3.1 (Change of Variable) If f, g and ¢’ are continuous on an open interval containing
[a,b] and ¢'(z) # 0 on [a, b], then

g(b)
/f @ar = [ s

/ﬂm dw—/f

Remark 18 We say that we have changed the variable from z to u through the substitution u = g(z).

where v = g(z) and du = ¢'(x)dz.
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Example 5.3.1 (i)

u =3
2 du = 3dz
sin(3xz)dx = 1
/0 (32) dr = —du
3
0—0,2—6
1
3
(i)
u =z’
2 du =2z dx
/3xcos($2)dm = 3
0 Bxdxzidu
0—0,2—4
(iii)
u=z’

3, du =2xdx 9
/ l’ex dLE = 1 — / e’u,
0 0o 2

rdxr = idu

0—0,3—9
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Definition 5.3.1 Suppose that f and g are continuous on [a, b]. Then the area bounded by the curves
y=f(z),y=g(x), z=aand x = b is defined to be A, where

b
A= [ 1@ - gla)do.
If f(x) > g(z) for all x € [a,b], then
b
A= [ @) - gla)ds.
If g(x) > f(z) for all x € [a,b], then
b
A= [ gta) = fla)da.
Example 5.3.2 Find the area, A, bounded by the curves y = sinz, y = cosx, © = 0 and = 7. [graph

Example 5.3.3 Find the area, A, bounded by y = 2% y = 2°, # = 0 and * = 2. [graph
[A=3/2, note that 2* < 2% on [0, 1] and z* > 2* on [1,2]
Example 5.3.4 Find the area bounded by y = 2 and y = z. To find the interval over which the area

is bounded by these curves, we find the points of intersection. [graph] [A=1/2]
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3.4 Integration by Parts

The product rule of differentiation yields an integration technique known as integration by parts. Let

us begin with the product rule:

% (u(z)v(z)) = (% u(w)) v(z) +u(z) (% v(fﬂ>>

On integrating each term with respect to = from x = a to x = b, we get

/j% (u(z)v(x))dz = /ab (% u(x)) v(z)dz —I—/abu(a:) (%v(m)) do

By using the differential notation and the fundamental theorem of calculus, we get

[u(z)v(z))’ = /ab(u(x)v(x))’dx = /ab u'(z)v(x)de + /ab u(x)v'(x) dx

The standard form of this integration by parts formula is written as

/uv’da: :uv—/u'vdm
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Theorem 5.4.1 (Integration by Parts) If u(z) and v(z) are two functions that are differentiable on

some open interval containing [a,b], then

for definite integrals and

for indefinite integrals.

/uv’dx = uv — /u”udx
[T}

Remark 19 The “two parts” of the integrand are “u(x)” and ”¢'(x)dz” or “u” and "dv”. It becomes

necessary to compute u'(x) and v(z) to make the integration by parts step.

Example 5.4.1 Evaluate the following integrals:
(i)/msinxdx (ii)/xe’” dz (m)/(lnx) dz
(iv)/arcsinxdx (v)/arccosxdx (vi)/wQe’” dx
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3.5 The Riemann Integral

In defining the definite integral, we restricted the definition to continuous functions. However, the
definite integral as defined for continuous functions is a special case of the general Riemann Integral
defined for bounded functions that are not necessarily continuous.
Definition 5.6.1 Let f be a function that is defined and bounded on a closed and bounded interval
[a,b]. Let

P={a=zy<z1<19<...<20 =0}
be a partition of [a, b]. Let

C={c:xi1<¢;<wmyi=12...,n}
be any arbitrary selection of points of [a,b]. Then the Riemann Sum that is associated with P and C
is denoted R(P) and is defined by

R(P) = f(a)(x1 — xo) + f(e2) (w2 — 1) + ..+ flen) (@ + Tp1) = Zf(ci)(% — ).

Let

Axizzi—xi,l,izl,Z,...,n

1A= max {Azi}.
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We write
n

R(P) =Y f(c:)Au;.

i=1
We say that

lim Zf(cz)Agz:Z =1
i=1

A[l=0

if and only if for each € > 0 there exists some ¢ > 0 such that

<é€

i=1

whenever ||A|| < ¢ for all partitions P and all selections C' that define the Riemann Sum.

If the limit [ exists as a finite number, we say that f is (Riemann) integrable and write

I:/abf(x)dx.

Theorem 5.6.3 If f is continuous on [a,b], then f is (Riemann) integrable and the definite integral

and the Riemann integral have the same value.
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3.6 Volumes of Revolution

One simple application of the Riemann integral is to define the volume of a solid.
Theorem 5.7.1 Suppose that a solid is bounded by the planes with equations * = a and = = b. Let
the cross-sectional area perpendicular to the x-axis at « be given by a continuous function A(x). Then

the volume V of the solid is given by
b
V = / A(z)dx.

Theorem 5.7.2 Let f be a function that is continuous on [a, b]. Let R denote the region bounded by
the curves * = a, x = b, y = 0 and y = f(x). Then the volume V obtained by rotating R about the

xr-axis is given by
b
V= / r(f(x))2da.

Theorem 5.7.3 Let f and R be defined as in Theorem 5.7.2. Assume that f(x) > 0 for all z € [a, ],
either @ > 0 or b < 0, so that [a,b] does not contain 0. Then the volume V' generated by rotating the

region R about the y-axis is given by

b
V = / (2rxf(x))dx.
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Example 5.7.2 Consider the region R bounded by y = sinz, y =0, x = 0 and x = 7. Find the volume
generated when R rotated about z-axis

Answer: By Theorem 5.7.2, the volume V is given by

Ty 1 . oo
V = wsin“zdr =7 |z(x —sinzcosx)| = —.
0 2 .2

Example 5.7.3 Consider the region R bounded by the circle (x — 4)? + 3* = 4. Compute the volume

V' generated when R is rotated around

(i) y=0 [327/3]
(i) z=0 [327%]
graph]

i) Since the area crosses the z-axis, it is sufficient to rotate the top half to get the required solid.

6 6 1 6 2
V:/7Ty2dx:7r/[4—(37—4)2]dm:W[élm——(x—él)?’] :7T|:16—§—§:|:3—7T.
) , 3 , 373 3

This is the volume of a sphere of radius 2.
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3.7 Arc Length and Surface Area

The Riemann integral is useful in computing the length of arcs. Let f and f’ be continuous on [a, b].
Let C' denote the arc
C={(z,f(z)):a <z <b}.

Let
P={a=zy<z1<19<...<70 =0}

be a partition of [a,b]. For each i =1,2,... n, let

Ax; = x; — 11, Ay; = f(z;) — f(zi1)

As; =/(f(z:) = f(@i-1))® + (@5 — 33-1)?
|A|| = max {Az,}.

1<i<n

Then As; is the length of the line segment joining the two points (z;_1, f(z;-1)) and (x;, f(z;)). Let
AP) =) As;.
i=1

Then A(P) is called the polygonal approzimation of C with respect to the partition P.
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Definition 5.8.1 Let C' = {(z, f(x)) : « € [a,b]} where f and f’ are continuous on [a,b]. Then the arc
length L of the arc C' is defined by

L = lim A = lim Z\/ l’z l’z 1)) +(£L’i—$i,1>2.

lAll—0 1A]1—0<

Theorem 5.8.1 The arc length L defined in Definition 5.8.1 is given by

:/ @)+ Llde.

Example 5.8.1 Let C' = {(z,coshz) : 0 <z < 2}. Then the arc length L of C' is given by

2 2
:/ V' 1+ sinh® v dz :/ coshz dz = [sinhz]j = sinh 2.
0

0

Example 5.8.2 Let

Then the arc length L of the curve C'is given by

/ \/ 1/2)2dx = /04(1+$)1/2dm = E(lan)w]i = % [5\/5— 1} :

23




Definition 5.8.2 Let C be defined as in Definition 5.8.1.

(i) The surface area S, generated by rotating C' about the z-axis is given by
Sx:/ 27| f(z) |/ (f'(x ldx.
(ii) The surface area S, generated by rotating C' about the y-axis
b
Sy = / 2|z|\/(f'(x))? + 1dz.

Example 5.8.3 Let C' = {(z,coshx) : 0 <z <4},

(i) Then the surface area S, generated by rotating C' around the z-axis is given by
4
Sy = / 27 cosh v/ 1 4 sinh® v dz = - - - = 7[4 + sinh 4 cosh 4].
0

(ii) The surface area S, generated by rotating the curve C' about the y-axis is given by

Sy —/ 212\ 1 +sinh®>zdr = -+ = 2r[rsinhz — cosh 2]y = 2n[4sinh4 — cosh4 + 1].
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Theorem 5.8.2 Let C' = {(x(¢),y(t)) : a <t < b}. Suppose that z'(¢) and y/(t) are continuous on
[a, b].

(i) The arc length L of C' is given by

/¢ Bt

(ii) The surface area S, generated by rotating C' about the z-axis is given by

b
&z/%wr¢w R dt.

iii) The surface area S, generated by rotating C' about the y-axis is given by
y & Y

sy:/ orla(t)| /(2 ()2 dt .
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Example 5.8.4 Let C' = {(et sint, e cost) 0<t< 7T/2}. Then

ds = /(2/(t))2 + (y/(t))2dt = /(et(sint + cost))? + (et(cost — sint))2 dt
= {e*(sint + cos®t + 2sint cost + cos’t + sin®t — 2 cost sint) }/2 dt

= et/2dt .

(i) The arc length L of C'is given by

L= /ﬂ/2 V2el dt = \/ﬁ[etrﬂ =V2(e"? - 1).

0

(ii) The surface area S, obtained by rotating C' about the z-axis is given by

_2\/§7T
5

Sy = /(:/2 2 (et cost)(V2el dt) = - -- (e"—2).

(iii) The surface area S, obtained by rotating C' about the y-axis is given by

w/2
Sy:/ QW(etsint)(\/ﬁetdt):---:@(26”—1—1).
0

26



4 Techniques of Integration
nt |
4.1 Integration by Substitution

Theorem 6.2.1 Let f(x), g(x), f(g(x)) and ¢'(z) be continuous on an interval [a,b]. Suppose that
F'(u) = f(u) where u = g(x). Then

0)/ﬂﬂ e = [ g ‘c

11/f (m-/’ ' Flu) du = F(g(t) - Flg(a)).
u=g(a)
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4.2 Integration by Parts

Theorem 6.3.1 Let f(z), g(x), f'(z) and ¢'(x) be continuous on an interval [a,b]. Then

<o/}mwmmx=ﬂmwm—/mwf@Mx

b

b
am/fuquw=U@mw<mmm»j/mmﬂ@m

(iii) /udv :uv—/vdu.

where v = f(z) and dv = ¢'(z) dx are the parts of the integrand.

o8



4.3 Integration by Partial Fractions

A polynomial with real coefficients can be factored into a product of powers of linear and quadratic
factors. This fact can be used to integrate rational functions of the form P(x)/Q(x) where P(z) and
Q(z) are polynomials that have no factors in common. If the degree of P(z) is greater than or equal to
the degree of Q(x), then by long division we can express the rational function by

P(x) r(x)

Q(z) Q(x)

where ¢(x) is the quotient and r(z) is the remainder whose degree is less than the degree of Q(z). Then

= q(z) +

Q(x) is factored as a product of powers of linear and quadratic factors. Finally r(z)/Q(x) is split into

a sum of fractions of the form

Ay n Ay R Ay,
ar+b  (ax+0b)?2 " (ax+0b)"
and
Blili' + Cl BQZ’ + 02 T n Bm:r; + Cm
ar? +br+c  (ax?+ br + c)? 0 (ax? +bx + o)™

Many calculators and computer algebra systems, such as Maple or Mathematica, are able to factor
polynomials and split rational functions into partial fractions. Once the partial fraction split up is

made, the problem of integrating a rational function is reduced to integration by substitution using

29



linear or trigonometric substitutions. It is best to study some examples and do some simple problems
by hand.
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4.4 Trigonometric substitutions

To integrate

/R(sinx,cos x)dx
1. R(—u,v) = —R(u,v) let cosz=t
2. R(u,—v) = —R(u,v) let sinz=t
3. R(—u,—v) = R(u,v) let tgaz=t
, x
4. otherwise let tg 5 =t

for cosx = t we have

|sinz| = V1 —12,
for sinx = t we have
|cosz| = V1 —1t2,
for tgx =t we have
1
Vit

Q(sin z, cos x)

/ P(sinx, cosx)

dx




for tgg =t we have

1— ¢ 2t 2
COSZE:COS2E—Sin2£ = , sinszsinzcosE =—— . dz = d
2 2 1+t 2 2 141t 1+t
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5 Improper Integrals

5.1 Integrals over Unbounded Intervals

Definition 7.1.1 Suppose that a function f is continuous on (—o0,00). Then we define the following

improper integrals when the limits exist

[e%) b
/ fa)de = lim [ f(z)da (1)

| f@de = tim_ [ f)de )

a——00

/Zf(w)da: :/;f(x)dx—i—/coof(gg)dx -

provided the integrals on the right hand side exist for some c. If these improper integrals exist, we say
that they are convergent; otherwise they are said to be divergent.

Theorem 7.1.2 Suppose that f and g are continuous on [a,c0) and 0 < f(z) < g(x) on [a, o0).

(i) If/ g(z)dz converges, then/ f(x)dx converges.

(ii) If/ f(z)dz diverges, then/ g(x)dx diverges.
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Definition 7.1.3 For each x > 0, the Gamma function, denoted I'(z), is defined by

[(x):= / t" et dt
0
Theorem 7.1.3 The Gamma function has the following properties:
I1)=1
[z +1) =2(x)
I'(n+1)=n!, n= natural number

Theorem 7.1.4 Let f be the normal probability distribution function defined by

flo) = ——e ()

o\ 21

where p is the constant mean of the distribution and o is the constant standard deviation of the

/_Zf(x)dx = 1.

Let F' be the normal distribution function defined by

F(z) = /_ F(t)dt.
64

distribution. Then the improper integral



Then F(b) — F(a) represents the percentage of normally distributed data that lies between a and b.

/abf(a:) da.

p+bo 1 b )
/ fz)dz = / e 2 dg
+ac oV 21 Jg

This percentage is given by

Furthermore,
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5.2 Discontinuities at End Points

Definition 7.2.1 (i) Suppose that f is continuous on [a,b) and

lim f(z) =400 or —o0.
x—b—

Then, we define

/abf(x) de = §liﬂril/:f(ac) dx .

If the limit exists, we say that the improper integral converges; otherwise we say that it diverges.

(ii) Suppose that f is continuous on (a,b] and

lim f(z) =400 or —o0.
r—a+

Then, we define

b b
/ flx)dz = lim [ f(z)dx.

f—>a+ é

If the limit exists, we say that the improper integral converges; otherwise we say that it diverges.
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Exercises 7.2

3.

8.

— 1
( cf. Integral criterion for series Z — >

[e.e]

Prove that / e fdr =1
0

1
1 s

Prove that ——dz = —
/0 V1 —a? 2

. Prove that / de =7
oo L2
*1 . )
Prove that / —dz = if and only if p > 1
1 P -p
t1
Prove that — dx converges if and only if p < 1.

o P

npkP
n=1
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. 6 Differential Calculus of Functions of Several Variables
c2

6.1 Introduction

Definition 6.1.1 Let M # (). A mapping o : M x M — [0,00) is a metric (distance) on M, if for all
x,y,z € M we have

L o(z,y) =0&x=y,
2. o(z,y) = o(y,x)  (symmetry),
3. o(z,2) < o(x,y) + o(y,x) (triangle inequality).

The set M equiped with a metric g is called a metric space (M, p).
Example 6.1.1 The set E' is a metric space, d(z,y) = |z — y|,
The set E™ is a metric space. A mapping d : E" x E" — [0, 00) defined by a formula

n

d(X,Y) = Z(%’ —4)? = V(11— 11)? + (22— 1) + -+ (@0 — yn)?,

=1

where X = (z1,29,...,2,), Y = (Y1,Y2,...,Yn) € E™ is called an Fuclidean metric.
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Another exaples of metrices in £™:

d(X,Y) = Z |z; —yi| = |21 — 1| + |22 — o +. ..+ |xn —yn| (s called “Postman (Taxicab) metric”)
i=1
d(X,Y) =max{|z; — 1|, |r2 — ya2|,.. ., |2n —yn|} (so called “maximal metric”)

By an Euclidean metric we have also defined a norm on E" by

1X1 =
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Definition 6.1.2

1. A set
Os(A) ={X e E": | X — A| <}

is called an open ball centered at A € E™ with a radius d > 0.
2. A neighbourhood of a point A € E" is an arbitrary set U such that there exists Os(A) C U.

3. A point A € Q C E" is called an interior point of the set 2 if there is a neighbourhood Os(A)
such that Os(A) C Q.

4. We call a set 2 C E™ an open set if each point x € {2 is an interior point of the set 2.

5. By an inerior of the set {2 C E" we mean a set of all interior points of the set €2, we denote it by
a Int).

6. We call a set (2 C E™ closed if it is a complement to an open set in E".

7. A point A is a boundary point of the set  C E™ if for any Os(A) we have

Os(A)NQ#D  and  Og(A) N (E™\ Q) £ 0.
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8. A boundary of the set €2 is denoted by 0f2.
9. A set Q C E" is called bounded if there exists Os(A) such that Q C Os(A).
10. A set 2 C E" is called convex if for any couple of the points X,Y € Q we have
A X +(1-2)Y €Q
for any A\ € [0, 1].

11. A set 2 C E" is called segment-connected if each couple of points from €2 can be connected by a

curve which lies completely in €2.
12. A set 2 C E" is called a domain if it is open and segment-connected.
Theorem 6.1.1 Let P be a metric space. Then
(i) @ and P are open sets.

(i) Let {Au}aesr be a system of open sets. Then U A, is open set.
acl

Theorem 6.1.2 A set 2 is open if and only if it is empty or it is a union of open balls.

Corollary 6.1.1 Open balls are open sets.
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Definition 6.1.3 Let Q C E™, Q # (. A mapping [ : Q — E is called a function of n variables on (.
Definition 6.1.4 Let Q € E", Q # (). A vector-valued function of n variables is a mapping f : Q@ — E™,

Le. f = (f17f27' . 7fm)
Definition 6.1.5 We say, that a sequence of points { X}k = 0> C E" has a limit X € E" if

lim [|X; — X[ =0
k—o00

Remark. X = [2F, 25, ... 28], X = [21,29,..., 1],
Jim [ X = X[ =0 = lgirgo|x§—xj|=0 Vi=1,2,...,n.

We will introduce first a notion of a polynomial function of n variables in £™:
ok kn
P(xy,29,...,2, 5 5 E Uy ey T N2 2
=0ky=0  kn=0

where n € N, ag,k,. k, € R, k;, m; are non-negative integers.

Rational function of n variables is then a fraction of two polynomials

P(xy,z9,...,2,)

Q(l’l,xg, e ,l’n)

R(l’l,l'g, R 7‘1'71) =
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6.2 Continuity and Limit
6.2.1 Continuity

Definition 6.2.1 (Heine’s definition of continuity) Let M C D(f) € E". We call a function f
continuous at the point A € M with respect to M if for any sequence { X}, C M we have

k—o0 k—o0

Sometimes we write in short

X —=A = f(Xy)— f(A).

We say that a function f is continuous on a set M if it is continuous w.r.t. M at any point x € M.
Definition 2. Let M C D(f) C E". We say that a vector-valued function f: M — E™ is continuous
on the set M if any its coordinate f;, © = 1,2, ..., m, is continuous on M.

Theorem 6.2.1 Let functions f and ¢ are continuous at the point A € QQ C E™. Then also functions
f+ag, f—g9, f-g, f/g (under the assumption g(A) # 0) and |f| are continuous at the point A.
Remark Continuity of f +g¢, f —g, f-g, f/g and |f] on a set.

Theorem 6.2.2 Let a function g be continuous at the point A € M C D(g) C E" wrt. M,
g(M) C N C E™ and a function f : N — FE is continuous at the point B = g(A) w.r.t. N. Then a

composition h = f o g is continuous at the point A w.r.t. M.
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6.2.2 Limit

Let us define E := F U {4o00}.
Definition 3. Let Q@ C E". We say that a point A € E" is a touching point (an accumulation point)
of a set Q if for any ball Bs(A) we have

Bs(A)n(Q\ {A}) = 0.

Definition 4. Let Q@ C E", Xy, € E" be a touching point of a set 2 and f : Q\ {Xo} — E be a
given function. We say that L € E is a limit of the function f at the point Xj if for any sequence
{Xi}2, € Q\ {Xo} we have

—00

We write

lim  f(X)=L.

XeN,X—Xo
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Theorem 6.2.3 Let (2 C E™" and a point X, € E" be an accumulation point of the set Q. Letf, g :

2 — F be given functions. Let us assume that the limits

lim  f(X), lim  g(X)

XeQ,X—Xo XeQ,X—Xo

exist. Then also the limits

lim  (f(X)+£g(X))=  lim f(X)+ lim _g(X),

XeQ, X—Xo XeQ, X—Xo XeQ, X—Xo

lim  (f(Og(X)= lm f(X) lim _g(X),

XeN,X—Xo XeN,X—Xo XeN,X—Xo

lim f(X) _ thGQ,X%Xo f(X>
XeN, X—Xo g(X) thGQ,X*)Xo g(X)

exist if the expressions have sence.
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Theorem 6.2.4 Let Q C E", let a point Xy € E" be an accumulation point of the set {2 and let

g:Q— E, f:9(Q) — E be given functions. Let the point g(Xy) € E™ be an accumulation point of

the set ¢g(€2). Let us assume that
lim  f(Y)=1L

Yeg(Q),Y =Yy

Xes%,l)r(naxo 9(X) =Y,

g(Xo) =Ypor g(X)#Y, VX eQ X #X,.

Then
i fg(X) =L

XeQ,X—Xo
Definition 5. Let Q@ C D(f) C E". We say that a vector valued function f
(f1, fa,-- -, fm), has a limit at the point Xy € E", if each its component f;, i = 1,2,
L;e E,v1=1,2,...,m, in the point X, in the sense of Definition 4.
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6.3 Directional derivative, partial derivative, total differential
6.3.1 Directional derivative

Let us denote
ou(t) = f(A+tu)

for A =lay,aq,...,a,] € E", u= (uj,ug,...,u,) € R" and t € R.
Definition 1. Let f be defined on a neighbourhood Us(A) of the point A € E™ and let u € R be a

vector. If the limit y y
i fA ) = f(A) L eult) — 9u(0)

t—0 t t—0 t

exists and is finite, then we say, that function f has at the point A (directional) derivative in the
direction u, i.e. ¢, is differentiable at 0.

Number ¢'(0) is called a derivative of the function f at the point A in the direction u. Directional
derivative is denoted by

af(A)
ou

Duf(A),  duf(A),  fu(A), Ouf(A).
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6.3.2 Partial derivative

Definition 2. Let f be defined on a neighbourhood Us(A) of the point A = [ay,as,...,a,] € E" and

let ey, eq,...,e, € R" be vectors such that

61:(1,0,0,...,()),
62:(0,1,0,...,()),

e, = (0,0,...,0,1).

If there is a derivative in the direction e; (i = 1,2,...,n), i.e. the limit
L f(A ) — f(A)
t—0 t

exists and is finite, then we say, that f has at the point A a partial derivative with respect to z;.

Partial derivative is denoted by

%ﬁ), Dif(A), dif(A), fulA), 0. f(A).

If 0., f(A) exists for all i = 1,2,...,n, then we say that f is differentiable at A.
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Theorem 6.3.1 Let f and ¢ be given functions of X = [z1,x9,...,2,] € E". Then
O, (f(X) £ 9(X)) = O, f(X) £ O, 9(X),

“\g(X) 9*(X) ’
t=1,2,...,n, at any point X at which the right hand side has a sense.

Let f be a scalar function of one variable and g be a function of X = [z1,x,...,2,] € E". Then

Oz, (f(9(X))) = f(9(X))Os,9(X), i=1,2,....n,

at any point X at which the right hand side has a sense.
Remark: A set of all functions defined on an open set Q@ C E" for which 0,,f € C(Q) for all
i=1,2,...,n we denote by C*(Q).
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Remark: Partial derivative of the second order are denoted by

’f(A)  O*f(A)
ox? ' Ox;0x;’

Remark: A set of all functions defined on an open set 2 C E" for which 0,,f € C(Q) for alli =
1,2,...,nand 0,,0,,f € C(Q) for all i, j = 1,2,...,n we denote by C%(Q).
Theorem 6.3.2 (Schwartz) Let Q C E? be open and A = [xg,y] € Q. If both second partial

derivatives

0.0, f, 0,0, f

exist in a certain neighbourhood of the point A and are continuous then

0,0, (A) = 0,0, f (A).
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6.3.3 (Total) Differential

Theorem 6.3.3 (Riesz Theorem) Let V,, be a space with a scalar product. For any linear functional
L eV, (V!isa dual space to V,, L:V, — R, L is linear and continuous) there exists a unique vector
xy, € V,, such that

L(h) = (zr|h) VheV,.

Definition 3. Let f be a function on Q2 C D(f) C E" and let a point A € € be and interior point
of the set ). e say that a function f is differentiable at the point A if there exists a linear mapping
L :R"™ — R (it depends on the point A) such that
A+h)— f(A)— L(h
L LF(A R — F(A) — L)

=0.
h—0 1Al

Then we call the linear mapping L as a (total) differential (or a tangent mapping) of the function f at
the point A.

We say, that the function f is differentiable on € if it is differentiable at any point A € €.

Remark: (Total) differential is denoted by

L =dfa=df(A).
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6.3.4 Gradient

To the diferential of a function f at the point A there is (via a Riesz Representation Theorem) associated
a unique vector Vf(A) = grad f(A) from the space R" (which is called a gradient of the function f at
the point A).
We can write

dfa(h) = (Vf(A)h) VheR"

Remark:

ker dfa = (Vf(A))*.
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Theorem 6.3.4 Let a function f : Q — E, Q2 C E" and let A be an interior point of Q. If f is
diferentiable at the point A then

(i) f is continuous at A,

(ii) f has a directional derivative in any direction v € R" and

Dy f(A) = %(A) = df4(u) YueR"

Corollary 6.3.1 Let the assumptions of the previous Theorem are fulfilled. Then
(i) dfa : u— 0y f(A) is a linear mapping,
(ii) if total differential df4 exists, then it is unique.

Theorem 6.3.5 Let a function f : Bs(A) — E, Bs(A) C E". Let us assume that all partial derivatives
of the first order exist in any point of Bs(A) and are continuous at A. Then f is differentiable at the
point A.

Cauchy inequality

g_z(A>‘ = [(VS(A))] < IAIIVFA)]

and if Vf(A) # o then the equality in the above expression holds if and only if h = ¢V f(A) for some
ceR, c#0.
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Theorem 6.3.1 Let a function f: Q — E, Q C E"™ and A be an interior point of 2. Let us assume
that f is differentiable at the point A and V f(A) # o. Then the direction of the highest increment of
the function f at the point A among all possible directions h € R™ with ||| =1 is

V(A

h=-——

IV A
The highest decay of the function f is in the direction
Vf(4)

h= L

VA
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6.3.5 Jacobi matrix
If f: R" — R" is differerentiable at the point A, then we define a matrix

D) = (L gL 2 w)

which is called Jacobi matriz of the function f at the point A.

Since h = Z h;e;, we have due to linearity of df4 that
i=1

Aalh Zh dale) ih o (4) = Dy’

Theorem 6.3.6 Let f,g : " — E are two differentiable mappings at the interior point A of the set
Q C E". Then
D(f £ g9)(A) = Df(A) £ Dg(A),

D(f - 9)(A) = Df(A)g(A) + [(A)Dg(A),

I\ (4 - DFA)g(A) = F(4)Dg(4)
p(L) - o . 94 #0
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6.3.6 Tangent plane

A graph of a function f:Q — E, Q C E™ is a subset of E"™! defined by
Grf={[X,yJe E"xXE : XeQ, y=f(X)}
A tangent plane to the graph of f at the point A is a set
{(Xoyl e E" x E : y = f(A) + (VF(A|X = A))}.
Forn =1, A =a € R we have a tangent line
y = fla) + f'(a)(z — a)
For n =2, A = [a,b] € R? we have a tangent plane

2= f(a,0) + 0, f(a,b)(z — a) + 8, f(a,0)(y = b) = f(a,b) + dfa((x — a,y = 1))
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6.3.7 Essential Theorems of Differential Calculus

Theorem 6.3.7 (Mean Value Theorem) Let a function f : Q — E, Q C E" be an open set and
the function f has directional derivative in all directions at any point of the set €. Let us assume that
A, X € Q are such that a segment AX C Q and let h = X — A. Then the function g(t) := f(A + th),
t € [0, 1] is defined and differentiable on [0, 1] and we have

g't) = %(A—l—th), t € [0,1]
Moreover,
(i) There exists £ € (0,1) such that
F(A+B) — (4) = 9(1) — g(0) = 2L (4 + ¢n)
(ii) If g is continuous on [0, 1] then
F(A+R) — f(A) = /:%(Antth)dt.
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Theorem 6.3.8 (Weierstrass Theorem, Extreme Value Theorem) A function which is continuous
on a compact (hence closed and bounded) set 2 C E™ attains both its maximum and a minimum on §.
Remark: There are points M, N € 2 such that

J(M) =min f(z), f(N) = max f(z).

x€Q e
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6.3.8 Derivative of a composition of functions

Let u = g(z) have a derivative at the point zy and let y = f(u) have a derivative at the point uy = g(x).

Then the composition y = F(x) = f(g(x)) has a derivative at the point z, and it holds

F'(xo) = f'(u0)g (w0) -

Theorem 6.8.9 (Derivative of a coposition of functions) Let u = u(z,y) and v = v(z,y) have
partial derivatives of the first order at the point (xg, yo). Let us call it ug = u(zo, yo) and vy = v(xg, yo)-
Let a function z = f(u,v) be differentiable at the point (ug, vo).

Then the composition z = F(z,y) = f(u(x,y),v(x,y)) has partial derivatives at the point (xg,yo) and
it holds

3xF($o, 3/0) = auf(u07 UO)axu(‘T()a 3/0) + avf(u(h Uo)axv(%a 3/0) )

ayF(JUo, yo) = auf(uo, Uo)ayu(l'o, 3/0) + &Jf(Uo, Uo)ayv(%, 3/0) .
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6.4 Taylor Theorem

Taylor formula for a function F € C**'((ty — 6,1y +6)), 6 > 0:

F(t) = Ti(t) + Ri(?)

= F(to) + F'(to)(t — to) + lF”(to)(zt —to)? ..+ lF(k)(to)(t —to)F +

9| c k! F(k+1) (f) (t - t0>k+1

(k+1)!
for any t € (to — d,tp + ) and some £ inbetween ¢ a .
Theorem 6.4.1 (Taylor formula with a Lagrange form of the remainder) Let us have a function
f € C*Q) or f € C*(N), respectively, Q@ C E". Let Us(A) C Q be a neighbourhood of the point
A =[ay,as,...,a,] € Q. Then for any vector u = (hy, ha, ..., h,) € R" with A+ u € Us(A) we have
1

FA+u) =Ti(w) + Ri(u) = f(A) + (VF(A)|u) + 55 (Hp(A + Eu)u’ u)

for some € € (0,1) or

FA+u) =D(u) + Ra(u) = f(A) + (Vf(Au) + %(Hf(A)UT’W + Ro(u),

where R;(u) or Ro(u) are the reminders with

Ri(u) 0 O

=0 Jlul| lul=0 [Jul[>
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6.5 Extremal Points
6.5.1 Introduction

Definition 6.5.1
By a quadratic form on the space E™ we call a function

n

K(:L‘) = K(l'l, B 7xn> = Z Qi LTy

i,7=1

We call a quadratic form K

e positive definite if K(xz) >0 Vx € E", x # o,

positively semidefinite if K(x) >0 Vr € E",

negative definite if K(x) <0 Vz € E", x # o,

negative semidefinite if K(x) <0 Vz € E",

indefinite if there exist z,y € E™ such that K(z) > 0 and K(y) < 0.
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Remark: Let us denote

ay;r a2 ... Qi

21 A22 ... Q9
D, =

Q1 Ay ... Ak

fork=1,...,n.

Theorem 6.5.1 (Sylvester criterion) Quadratic form K is
(a) positive definite if and only if det D, > 0 for all k = 1,... n,
(b) negative definite if and only if (—1)"det Dy, > 0 forall k = 1,...,n,

(c) if det D,, # 0 and the form K is not definite then K is indefinite.
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6.5.2 Local extrema
Let Q C E" and f: Q) — FE be a given function. A point A € 2 such that
fA) < f(X) VX e

is called a point of minima (an absolute minimum) of the function f on the set €.
Definition 6.5.2 We say that a function f(X) has at the point A € Q C D(f) a local minimum (local

mazimum) w.r.t. €, if there exists a neighbourhood Us(A) such that

FA) < F(X) (f(A) = f(X))
for all X € Us(A) N Q.

The points local minima (local maxima) are called extremal points and values of the function f evaluated
at these extremal points are called extremal values.

Theorem 6.5.1 If for at least one index 1 < j < n the partial derivative &Ej f(A) exists and is non-zero
then the function f has no local extrema at the point A.

Theorem 6.5.2 A function f can have sharp local extremal points at most in a countable set.
Theorem 6.5.2 Let a function f : 2 — E be diferentiable at the interior point A € Q. If A is an

extremal point of the function f then
df A=0 (or equivalently Vf(A) = o)
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Definition 6.5.3 Let 2 be open sobset of E" and let f : {0 — E be diferentiable in (2.
The points A € €2 such that

df A=0 (or equivalently Vf(A) = o)

are called critical points (stationary points) of the function f in €.
Theorem 6.5.3 Let us have a function f € C%*(Q2), Q C E™ be open in E™ and let A € Q be a critical
point of the function f. Then

(i) if A is a local minimum then
(Hp(A)u"|u) >0 YueR",

(ii) if
(Hp(A)u"|u) >0, YueR"  u#o

then A is a isolated local minimum,

(i) if (Hf(A)u"|u) is indefinte then there is no extremal value at the point A
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6.5.3 Global extremal points

Usually we look for the largest (smallest) value of a given function on the whole set Q. If the set Q is
compact then it follows from Weierstrass Theorem that there is min f(£2) and max f(2).

Global (absolute) extremal points on the set ) we obtain by inspection of the points
(1) stationary points of Int 2,
(2) points in Int Q) where some of the (partial) derivatives does not exist,

(3) boundary points of the set Q (of any dimension less than n).
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