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1 Introduction

1.1 What you will know after the lecture

• to operate with infinite sequences

• to sum (some) infinite sequences

• to antiderive (some/a class of) one-variable functions

• to apply antiderivation (e.g. to calculate an area given by a function, a surface of a rotating body,

a length of a curve, ...)

• to apply differential calculus in more dimensions

• to locate local extrema of functions of two or more variables

• to locate global extrema of functions of two or more variables with respect to a given domain

Literature for further study:

Introduction to Real Analysis by Prof. W. Trench

(http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH REAL ANALYSIS.PDF)

Sections 2–4 are taken from the Calculus Bible.

Section 5 follows lecture notes of Prof. J. Daněček.

2 INFINITE SERIES

2.1 Sequences

Definition 8.1.1 An infinite sequence (or sequence) is a function, say f , whose domain is the set of

all integers greater than or equal to some integer m. If n is an integer greater than or equal to m and

f(n) = an, then we express the sequence by writing its range in any of the following ways:

1. f(m), f(m+ 1), f(m+ 2), . . .

2. am, am+1, am+2, . . .

3. {f(n) : n ≥ m}

4. {f(n)}∞n=m

5. {an}∞n=m
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Definition 8.1.2 A sequence {an}∞n=m is said to converge to a real number L (or has limit L) if for

each ε > 0 there exists some positive integer M such that |an − L| < ε whenever n ≥M . We write,

lim
n→∞

an = L or an → L as n→∞.

If the sequence does not converge to a finite number L, we say that it diverges.

Theorem 8.1.1 Suppose that c is a positive real number, {an}∞n=m and {bn}∞n=m are convergent se-

quences. Then

1. lim
n→∞

(can) = c lim
n→∞

an

2. lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

3. lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

4. lim
n→∞

(anbn) = lim
n→∞

an lim
n→∞

bn

5. lim
n→∞

an/bn = lim
n→∞

an/ lim
n→∞

an, if lim bn 6= 0.

6. lim
n→∞

(an)c = ( lim
n→∞

an)c

7. lim
n→∞

(ean) = elimn→∞ an

8. Suppose that an ≤ bn ≤ cn for all n ≥ m and

lim
n→∞

an = lim
n→∞

cn = L.

Then

lim
n→∞

bn = L.

2.2 Monotone Sequences

Definition 8.2.1 Let {an}∞n=m be a given sequence. Then {an}∞n=m is said to be

(a) increasing if an < an+1 for all n ≥ m;

(b) decreasing if an+1 < an for all n ≥ m;

(c) nondecreasing if an ≤ an+1 for all n ≥ m;

(d) nonincreasing if an+1 ≤ an for all n ≥ m;

(e) bounded if a ≤ an ≤ b for some constants a and b and all n ≥ m;

(f) monotone if {an}∞n=m is increasing, decreasing, nondecreasing or nonincreasing.
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(g) a Cauchy sequence if for each ε > 0 there exists some M such that |an1 − an2| < ε whenever

n1 ≥M and n2 ≥M .

Theorem 8.2.1

(a) A monotone sequence converges to some real number if and only if it is a bounded sequence.

(b) A sequence is convergent if and only if it is a Cauchy sequence.

2.3 Infinite Series

Definition 8.3.1 Let {an}∞n=1 be a given sequence. Let

s1 = a1,

s2 = a1 + a2,

s3 = a1 + a2 + a3,
...

sn =
n∑
k=1

ak

for all natural number n. If the sequence {sn}∞n=1 converges to a finite number L, then we write

L = a1 + a2 + a3 · · · =
∞∑
k=1

ak

We call
∞∑
k=1

ak an infinite series and write

L = a1 + a2 + a3 · · · =
∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = L.

We say that L is the sum of the series and the series converges to L. If a series does not converge to a

finite number, we say that it diverges. The sequence {sn}∞n=1 is called the sequence of the n-th partial

sums of the series.

Theorem 8.3.1 Suppose that a and r are real numbers and a 6= 0. Then the geometric series

a+ ar + ar2 + . . . =
∞∑
k=0

ark =
a

1− r

if the quotioent r satisfies |r| < 1.

The geometric series diverges if |r| ≥ 1.

Proof. For each natural number n, let

sn = a+ ar + . . .+ arn−1.
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On multiplying both sides by r, we get

rsn = ar + ar2 + . . .+ arn−1 + arn

sn − rsn = a− arn

(1− r)sn = a(1− rn)

sn = a
1− rn

1− r
=

a

1− r
− a

1− r
rn.

If |r| < 1, then

lim
n→∞

sn =
a

1− r
− a

1− r
lim
n→∞

rn =
a

1− r
.

If |r| > 1, then lim
n→∞

rn is not finite and so the sequence {sn}∞n=1 of n-th partial sums diverges.

If r = 1, then sn = na and lim
n→∞

na is not a finite number.

This completes the proof of the theorem.

Theorem 8.3.2 (Divergence Test) If the series
∞∑
k=1

ak converges, then lim
n→∞

an = 0. If lim
n→∞

an 6= 0,

then the series diverges.

Proof. Suppose that the series converges to L. Then

lim
n→∞

an = lim
n→∞

(
n∑
k=1

ak

n−1∑
k=1

ak

)
= lim

n→∞

n∑
k=1

ak − lim
n→∞

n−1∑
k=1

ak = L− L = 0.

The rest of the theorem follows from the preceding argument. This completes the proof of this theorem.

Theorem 8.3.3 (The Integral Test) Let f be a function that is defined, continuous and decreasing

on [1,∞) such that f(x) > 0 for all x ≥ 1. Then

∞∑
n=1

f(n) and

∫ ∞
1

f(x) dx

either both converge or both diverge.

Proof. Suppose that f is decreasing and continuous on [1,∞), and f(x) > 0 for all x ≥ 1. Then for

all natural numbers n, we get,

n+1∑
k=2

f(k) ≤
∫ n+1

1

f(x) dx ≤
n∑
k=1

f(k)

It follows that,
∞∑
k=2

f(k) ≤
∫ ∞

1

f(x) dx ≤
∞∑
k=1

f(k)

Since f(1) is a finite number, it follows that

∞∑
k=1

f(n) and

∫ ∞
1

f(x) dx
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either both converge or both diverge. This completes the proof of the theorem.

Theorem 8.3.4 Suppose that p > 0. Then the p-series

∞∑
n=1

1

np

converges if p > 1 and diverges if 0 < p ≤ 1. In particular, the harmonic series

∞∑
n=1

1

n

diverges.

Proof goes via the Integral Test.

2.4 Series with Positive Terms

Theorem 8.4.1 (Algebraic Properties) Suppose that
∞∑
k=1

ak and
∞∑
k=1

bk are convergent series and

c > 0. Then

1.
∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk

2.
∞∑
k=1

(ak − bk) =
∞∑
k=1

ak −
∞∑
k=1

bk

3.
∞∑
k=1

cak = c
∞∑
k=1

ak

4. If m is any natural number, then the series
∞∑
k=1

ck and
∞∑
k=m

ck either both converge or both diverge.

Theorem 8.4.2 (Comparison Test) Suppose that 0 < an ≤ bn for all natural numbers n ≥ 1.

(a) If there exists some M such that
n∑
k=1

ak ≤M , for all natural numbers n, then
∞∑
k=1

ak converges.

If there exists no such M , then the series diverges.

(b) If
∞∑
k=1

bk converges, then
∞∑
k=1

ak converges.

(c) If
∞∑
k=1

ak diverges, then
∞∑
k=1

bk diverges.
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(d) If cn > 0 for all natural numbers n, and

lim
n→∞

an
cn

= L, 0 < L <∞,

then the series
∞∑
k=1

ak and
∞∑
k=1

ck either both converge or both diverge.

Theorem 8.4.3 (Ratio Test) Suppose that 0 < an for every natural number n and

lim
n→∞

an+1

an
= r.

Then the series
∞∑
n=1

an

(a) converges if r < 1;

(b) diverges if r > 1;

(c) may converge or diverge if r = 1; the test fails.

Theorem 8.4.4 (Root Test) Suppose that 0 < an for each natural number n and

lim
n→∞

(an)1/n = r.

Then the series
∞∑
n=1

an

(a) converges if r < 1;

(b) diverges if r > 1;

(c) may converge or diverge if r = 1; the test fails.

2.5 Alternating Series

Definition 8.5.1 Suppose that for each natural number n, bn is positive or negative. Then the series
∞∑
k=1

bk is said to converge

(a) absolutely if the series
∞∑
k=1

|bk| converges;

(b) conditionally if the series
∞∑
k=1

bk converges but
∞∑
k=1

|bk| converges diverges.

8



Theorem 8.5.1 If a series converges absolutely, then it converges.

Definition 8.5.2 Suppose that for each natural number n, an > 0. Then an alternating series is a

series that has one of the following two forms:

(a) a1 − a2 + a3 − · · ·+ (−1)n+1an + · · · =
∞∑
k=1

(−1)k+1ak

(b) −a1 + a2 − a3 + · · ·+ (−1)nan + · · · =
∞∑
k=1

(−1)kak.

Theorem 8.5.2 Suppose that an > an+1 > 0 for all natural numbers m, and lim
n→∞

an = 0. Then

(a)
∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an both converge.

(b)

∣∣∣∣∣
∞∑
k=1

(−1)k+1ak −
n∑
k=1

(−1)k+1ak

∣∣∣∣∣ < an+1, for all n;

(c)

∣∣∣∣∣
∞∑
k=1

(−1)kak −
n∑
k=1

(−1)kak

∣∣∣∣∣ < an+1, for all n;

Theorem 8.5.3 Consider a series {ak}∞k=1. Let

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L, lim
n→∞

|an|1/n = M.

(a) If L < 1, then the series {ak}∞k=1 converges absolutely.

(b) If L > 1, then the series {ak}∞k=1 does not converge absolutely.

(c) If M < 1, then the series {ak}∞k=1 converges absolutely.

(b) If M > 1, then the series {ak}∞k=1 does not converge absolutely.

(e) If L = 1 or M = 1, then the series {ak}∞k=1 may or may not converge absolutely.

2.6 Power Series

Definition 8.6.1 If a0, a1, a2, . . . is a sequence of real numbers, then the series

∞∑
k=0

ak(x− c)k

is called a power series in x.

A real number c is called the centre of power series.
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A positive number r is called the radius of convergence and the interval (c−r, c+r) is called the interval

of convergence of the power series if the power series converges absolutely for all x in (c− r, c+ r) and

diverges for all x such that |x− c| > r.

The end point x = c+ r is included in the interval of convergence if
∞∑
k=0

akr
k converges.

The end point x = c− r is included in the interval of convergence if the series
∞∑
k=0

(−1)kakr
k converges.

If the power series converges only for x = c, then the radius of convergence is defined to be zero.

If the power series converges absolutely for all real x, then the radius of convergence is defined as +∞.

Theorem 8.6.1 If the series
∞∑
n=0

anx
n converges for x = r 6= 0, then the series

∞∑
n=0

anx
n converges

absolutely for all numbers x such that |x| < |r|.

Theorem 8.6.2 If the series
∞∑
n=0

an(x−c)n converges for some x−c = r 6= 0, then the series
∞∑
n=0

an(x−c)n

converges absolutely for all x such that |x− c| < |r|.

Theorem 8.6.3 Let
∞∑
n=0

anx
n be any power series. Then exactly one of the following three cases is true.

(i) The series converges only for x = 0.

(ii) The series converges for all x ∈ R.

(iii) There exists a number R such that the series converges for all x with |x| < R and diverges for all

x with |x| > R.

Theorem 8.6.4 Let
∞∑
n=0

an(x− c)n be any power series. Then exactly one of the following three cases

is true.

(i) The series converges only for x = c.

(ii) The series converges for all x ∈ R.

(iii) There exists a number R such that the series converges for all x with |x− c| < R and diverges for

all x with |x− c| > R.

Theorem 8.6.5 If R > 0 and the series
∞∑
n=0

anx
n converges for |x| < R, then the series

∞∑
n=0

nanx
n−1,

obtained by term-by-term differentiation of
∞∑
n=0

anx
n converges absolutely for |x| < R.

Theorem 8.6.6 If R > 0 and the series
∞∑
n=0

an(x− c)n converges for all x such that |x− a| < R, then
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the series
∞∑
n=0

an(x − c)n may be differentiated with respect to x any number of times and each of the

differential series converges for all x such that |x− a| < R.

Theorem 8.6.7 Suppose that R > 0 and f(x) =
∞∑
n=0

anx
n and R is radius of convergence of the series

∞∑
n=0

anx
n. Then f(x) is continuous for all x such that |x| < R.

Theorem 8.6.8 Suppose that R > 0 and f(x) =
∞∑
n=0

anx
n and R is radius of convergence of the series

∞∑
n=0

anx
n. For each x such that |x| < R, we define

F (x) =

∫ x

0

f(t)dt.

Then, for each x such that |x| < R, we get

F (x) =
∞∑
n=0

an
xn+1

n+ 1
.

Theorem 8.6.9 Suppose that f(x) =
∞∑
n=0

anx
n for all |x| < R, where R > 0 is the radius of convergence

of the series
∞∑
n=0

anx
n. Then f(x) has continuous derivatives of all orders for |x| < R that are obtained

by successive term-by-term differentiations of
∞∑
n=0

anx
n

Definition 8.6.2 The radius of convergence of the power series
∞∑
n=0

an(x− c)n is

(a) zero, if the series converges only for x = a;

(b) r, if the series converges absolutely for all x such that |x− a| < r and diverges for all x such that

|x− a| > r.

(c) ∞, if the series converges absolutely for all real number x.

If the radius of convergence of the power series in (x − a) is r, 0 < r < ∞, then the interval of

convergence of the series is (a − r, a + r). The end points x = a + r or x = a − r are included in the

interval of convergence if the corresponding series
∞∑
n=0

anr
n or

∞∑
n=0

(−1)nanr
n converges, respectively.

If r =∞, then the interval of convergence is (−∞,∞).
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2.7 Taylor Polynomials and Series

Theorem 8.7.1 (Taylor’s Theorem) Suppose that f, f ′, · · · , f (n+1) are all continuous for all x such

that |x− a| < R. Then there exists some c between a and x such that

f(x) = Pn(x) +Rn(x)

where

Pn(x) =
n∑
k=0

f (k)(a)
(x− a)k

k!
, Rn(x) = f (n+1)(ξ)

(x− a)n+1

(n+ 1)!

The polynomial Pn(x) is called the n-th degree Taylor polynomial approximation of f . The term Rn(x)

is called the Lagrange form of the remainder.

Theorem 8.7.2 (Binomial Series) If m is a real number and |x| < 1, then

(1 + x)m = 1 +
∞∑
k+1

m(m− 1) · · · (m− k + 1)

k!
xk = 1 +mx+

m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + · · · .

This series is called the binomial series. If we use the notation(
m

k

)
=
m(m− 1) · · · (m− k + 1)

k!

then

(
m

k

)
is called the binomial coefficient and

(1 + x)m = 1 +
∞∑
k+1

(
m

k

)
xk.

If m is a natural number, then we get the binomial expansion

(1 + x)m = 1 +
m∑
k+1

(
m

k

)
xk.

Theorem 8.7.3 The following power series expansions of functions are valid.

1. (1− x)−1 = 1 +
∞∑
k=1

xk and (1 + x)−1 = 1 +
∞∑
k=1

(−1)kxk, |x| < 1.

2. ex = 1 +
∞∑
k=1

xk

k!
and e−x = 1 +

∞∑
k=1

(−1)k
xk

k!
, |x| <∞.

3. sinx =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, |x| <∞.

4. cos x =
∞∑
k=0

(−1)k
x2k

(2k)!
, |x| <∞.
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5. sinhx =
∞∑
k=0

x2k−1

(2k + 1)!
, |x| <∞.

6. coshx =
∞∑
k=0

x2k

(2k)!
, |x| <∞.

7. ln(1 + x) =
∞∑
k=0

(−1)k
xk+1

k + 1
, −1 < x ≤ 1.

8.
1

2
ln

1 + x

1− x
=
∞∑
k=0

(−1)k
x2k+1

2k + 1
, −1 < x < 1.

9. arctan x =
∞∑
k=0

(−1)k
x2k+1

2k + 1
, −1 ≤ x ≤ 1.

10. arcsin x =
∞∑
k=0

(
−1/2

k

)
(−1)k

x2k+1

2k + 1
, −1 ≤ x ≤ 1.

3 The Definite Integral

3.1 Area Approximation

Example 5.1.1 Find the area bounded by the graph of the function y = 4, y = 0, x = 0, x = 3.

[graph]

From geometry, we know that the area is the height 4 times the width 3 of the rectangle.

Area = 12.

Example 5.1.2 Find the area bounded by the graphs of y = 4x, y = 0, x = 0, x = 3.

[graph]

From geometry, the area of the triangle is 1/2 times the base, 3, times the height, 12.

Area = 18.

Example 5.1.3 Find the area bounded by the graphs of y = 2x, y = 0, x = 1, x = 4.

[graph]

The required area is covered by a trapezoid. The area of a trapezoid is 1/2 times the sum of the parallel

sides times the distance between the parallel sides.

Area = (2 + 8)(3)/2 = 15.

Example 5.1.4 Find the area bounded by the curves y =
√

4− x2, y = 0, x = −2, x = 2.

[graph]

By inspection, we recognize that this is the area bounded by the upper half of the circle with center at

(0, 0) and radius 2. Its equation is

x2 + y2 = 4 or y =
√

4− x2, −2 ≤ x ≤ 2.
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Again from geometry, we know that the area of a circle with radius 2 is πr2 = 4π. The upper half of

the circle will have one half of the total area. Therefore, the required area is 2π.

Example 5.1.5 Approximate the area bounded by y = x2, y = 0, x = 0, and x = 3.

Given that the exact area is 9, compute the error of your approximation.

3.2 The Definite Integral

Let f be a function that is continuous on a bounded and closed interval [a, b]. Let p = {a = x0 < x1 <

x2 < · · · < xn = b} be a partition of [a, b], not necessarily equally spaced. Let

mi = min{f(x) : xi−1 ≤ x ≤ xi}, i = 1, 2, . . . , n;

Mi = max{f(x) : xi−1 ≤ x ≤ xi}, i = 1, 2, . . . , n;

∆xi = xi − xi−1, i = 1, 2, . . . , n;

∆ = max{∆xi : i = 1, 2, . . . , n};
L(p) = m1∆x1 +m2∆x2 + · · ·+mn∆xn;

U(p) = M1∆xi +M2∆x2 + · · ·+Mn∆xn.

We call L(p) the lower Riemann sum. We call U(p) the upper Riemann sum.

Clearly L(p) ≤ U(p), for every partition.

Let

Lf = inf{L(p) : p is a partition of [a, b]}, Uf = sup{U(p) : p is a partition of [a, b]}.

Definition 5.2.1 If f is continuous on [a, b] and Lf = Uf = I, then we say that:

(i) f is integrable on [a, b];

(ii) the definite integral of f(x) from x = a to x = b is I;

(iii) I is expressed, in symbols, by the equation

I =

∫ b

a

f(x) dx ;

(iv) the symbol “

∫
” is called the “integral sign”; the number “a” is called the “lower limit”; the

number “b” is called the “upper limit”; the function “f(x)” is called the “integrand”; and the

variable “x” is called the (dummy) “variable of integration”.

(v) If f(x) ≥ 0 for each x in [a, b], then the area, A, bounded by the curves y = f(x), y = 0, x = a

and x = b, is defined to be the definite integral of f(x) from x = a to x = b. That is,

A =

∫ b

a

f(x) dx .
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(vi) For convenience, we define ∫ a

a

f(x) dx = 0,

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx .

Theorem 5.2.1 If a function f is continuous on a closed and bounded interval [a, b], then f is integrable

on [a, b].

Theorem 5.2.2 (Linearity) Suppose that f and g are continuous on [a, b] and c1 and c2 are two

arbitrary constants. Then

(i) ∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx

(ii) ∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx −
∫ b

a

g(x) dx

(iii) ∫ b

a

c1f(x) dx = c1

∫ b

a

f(x) dx ,

∫ b

a

c2g(x) dx = c2

∫ b

a

g(x) dx ,

∫ b

a

(c1f(x) + c2g(x)) dx = c1

∫ b

a

f(x) dx + c2

∫ b

a

g(x) dx

Theorem 5.2.3 (Additivity) If f is continuous on [a, b] and a < c < b, then∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx .

Theorem 5.2.4 (Order Property) If f and g are continuous on [a, b] and f(x) ≤ g(x) for all x ∈ [a, b],

then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

Theorem 5.2.5 (Mean Value Theorem for Integrals) If f is continuous on [a, b], then there exists

some point c ∈ [a, b] such that ∫ b

a

f(x)dx = f(c)(b− a).
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Definition 5.2.2 The number f(c) given in Theorem 5.2.6 is called the average value of f on [a, b],

denoted fav[a, b]. That is

fav[a, b] =
1

b− a

∫ b

a

f(x) dx .

Theorem 5.2.6 (Fundamental Theorem of Calculus, First Form) Suppose that f is continuous

on some closed and bounded interval [a, b] and

g(x) :=

∫ x

a

f(t) dt

for each x ∈ [a, b]. Then g(x) is continuous on [a, b], differentiable on (a, b) and for all x ∈ (a, b),

g′(x) = f(x). That is
d

dx

(∫ x

a

f(t) dt

)
= f(x).

Theorem 5.2.7 (Fundamental Theorem of Calculus, Second Form) If f and g are continuous

on a closed and bounded interval [a, b] and g′(x) = f(x) on (a, b), then∫ b

a

f(x) dx = g(b)− g(a).

We use the notation:

[g(x)]ba = g(b)− g(a).

Theorem 5.2.8 (Leibniz Rule) If α(x) and β(x) are differentiable for all x and f is continuous for

all x, then

d

dx

(∫ β(x)

α(x)

f(t) dt

)
= f(β(x)) · β′(x)− f(α(x)) · α′(x).

Example 5.2.1 [page 201] Compute each of the following definite integrals and sketch the area

represented by each integral:

(i)

∫ 4

0

x2 dx (ii)

∫ π

0

sinx dx

(iii)

∫ π/2

−π/2
cosx dx (iv)

∫ 10

0

ex dx

(v)

∫ π/3

0

tanx dx (vi)

∫ π/2

π/6

cotx dx

(vii)

∫ π/4

−π/4
secx dx (viii)

∫ 3π/4

π/4

cscx dx

(xi)

∫ 1

0

sinhx dx (x)

∫ 1

0

coshx dx

We note that each of the functions in the integrand is positive on the respective interval of integration,

and hence, represents an area. In order to compute these definite integrals, we use the Fundamental
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Theorem of Calculus, Theorem 5.2.2. As in Chapter 4, we first determine an anti-derivative g(x) of the

integrand f(x) and then use ∫ b

a

f(x) dx = g(b)− g(a) = [g(x)]ba.

Example 5.2.2 Evaluate each of the following integrals:

(i)

∫ 10

1

1

x
dx (ii)

∫ π/2

0

sin(2x) dx

(iii)

∫ π/6

0

cos(3x) dx (iv)

∫ 2

0

(x4− 3x2 + 2x− 1) dx

(v)

∫ 3

0

sinh(4x) dx (vi)

∫ 4

0

cosh(2x) dx

Basic List of Indefinite Integrals:

∫
xn dx =

xn+1

n+ 1
+ c


n ∈ N, x 6= 0,

n ∈ R, n 6= 1, x > 0

∫
1

x
dx = ln |x|+ c, x 6= 0∫

sinx dx = − cosx+ c

∫
cosx dx = sinx+ c∫

sinhx dx = coshx+ c

∫
coshx dx = sinhx+ c∫

1

1 + x2
dx = arctg x+ c

∫
1√

1− x2
dx = arcsinx+ c∫

ex dx = ex + c

3.3 Integration by Substitution

Many functions are formed by using compositions. In dealing with a composite function it is useful to

change variables of integration. It is convenient to use the following differential notation:

If u = g(x), then du = g′(x) dx .

The symbol “ du ” represents the “differential of u,” namely, g(x) dx .

Theorem 5.3.1 (Change of Variable) If f , g and g′ are continuous on an open interval containing

[a, b] and g′(x) 6= 0 on [a, b], then∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du

∫
f(g(x))g′(x) dx =

∫
f(u) du ,

where u = g(x) and du = g′(x)dx.

Remark 18 We say that we have changed the variable from x to u through the substitution u = g(x).
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Example 5.3.1 (i)

∫ 2

0

sin(3x) dx =

∣∣∣∣∣∣∣∣∣∣∣

u = 3x

du = 3 dx

dx =
1

3
du

0 7→ 0, 2 7→ 6

∣∣∣∣∣∣∣∣∣∣∣
=

∫ 6

0

1

3
sinu du =

1

3
[− cosu]60

=
1

3
(− cos 6− (−1)) =

1

3
(1− cos 6) ,

(ii)

∫ 2

0

3x cos(x2) dx =

∣∣∣∣∣∣∣∣∣∣∣

u = x2

du = 2x dx

3x dx =
3

2
du

0 7→ 0, 2 7→ 4

∣∣∣∣∣∣∣∣∣∣∣
=

∫ 4

0

cosu

(
3

2
du

)
=

3

2
[sinu]40 =

3

2
sin 4 ,

(iii)

∫ 3

0

xex
2

dx =

∣∣∣∣∣∣∣∣∣∣∣

u = x2

du = 2x dx

x dx =
1

2
du

0 7→ 0, 3 7→ 9

∣∣∣∣∣∣∣∣∣∣∣
=

∫ 9

0

eu
1

2
du =

1

2
[eu]90 =

1

2
(e9 − 1) .

Definition 5.3.1 Suppose that f and g are continuous on [a, b]. Then the area bounded by the curves

y = f(x), y = g(x), x = a and x = b is defined to be A, where

A =

∫ b

a

|f(x)− g(x)| dx .

If f(x) ≥ g(x) for all x ∈ [a, b], then

A =

∫ b

a

f(x)− g(x) dx .

If g(x) ≥ f(x) for all x ∈ [a, b], then

A =

∫ b

a

g(x)− f(x) dx .

Example 5.3.2 Find the area, A, bounded by the curves y = sinx, y = cosx, x = 0 and x = π. [graph]

[A = 2
√

2]

Example 5.3.3 Find the area, A, bounded by y = x2, y = x3, x = 0 and x = 2. [graph]

[A=3/2, note that x3 ≤ x2 on [0, 1] and x3 ≥ x2 on [1, 2]]

Example 5.3.4 Find the area bounded by y = x3 and y = x. To find the interval over which the area

is bounded by these curves, we find the points of intersection. [graph] [A = 1/2]
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3.4 Integration by Parts

The product rule of differentiation yields an integration technique known as integration by parts. Let

us begin with the product rule:

d

dx
(u(x)v(x)) =

(
d

dx
u(x)

)
v(x) + u(x)

(
d

dx
v(x)

)
On integrating each term with respect to x from x = a to x = b, we get∫ b

a

d

dx
(u(x)v(x)) dx =

∫ b

a

(
d

dx
u(x)

)
v(x) dx +

∫ b

a

u(x)

(
d

dx
v(x)

)
dx

By using the differential notation and the fundamental theorem of calculus, we get

[u(x)v(x)]ba =

∫ b

a

(u(x)v(x))′ dx =

∫ b

a

u′(x)v(x) dx +

∫ b

a

u(x)v′(x) dx

The standard form of this integration by parts formula is written as∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x) dx

∫
uv′ dx = uv −

∫
u′v dx

Theorem 5.4.1 (Integration by Parts) If u(x) and v(x) are two functions that are differentiable on

some open interval containing [a, b], then∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x) dx

for definite integrals and ∫
uv′ dx = uv −

∫
u′v dx

for indefinite integrals.

Remark 19 The “two parts” of the integrand are “u(x)” and ”v′(x) dx ” or “u” and ”dv”. It becomes

necessary to compute u′(x) and v(x) to make the integration by parts step.

Example 5.4.1 Evaluate the following integrals:

(i)

∫
x sinx dx (ii)

∫
xe−x dx (iii)

∫
(lnx) dx

(iv)

∫
arcsinx dx (v)

∫
arccosx dx (vi)

∫
x2ex dx
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3.5 The Riemann Integral

In defining the definite integral, we restricted the definition to continuous functions. However, the

definite integral as defined for continuous functions is a special case of the general Riemann Integral

defined for bounded functions that are not necessarily continuous.

Definition 5.6.1 Let f be a function that is defined and bounded on a closed and bounded interval

[a, b]. Let

P = {a = x0 < x1 < x2 < . . . < xn = b}

be a partition of [a, b]. Let

C = {ci : xi−1 ≤ ci ≤ xi, i = 1, 2, . . . , n}

be any arbitrary selection of points of [a, b]. Then the Riemann Sum that is associated with P and C

is denoted R(P ) and is defined by

R(P ) = f(c1)(x1 − x0) + f(c2)(x2 − x1) + . . .+ f(cn)(xn + xn−1) =
n∑
i=1

f(ci)(xi − xi−1).

Let

∆xi = xi − xi−1, i = 1, 2, . . . , n

‖∆‖ = max
1≤i≤n

{∆xi}.

We write

R(P ) =
n∑
i=1

f(ci)∆xi.

We say that

lim
‖∆‖→0

n∑
i=1

f(ci)∆xi = I

if and only if for each ε > 0 there exists some δ > 0 such that∣∣∣∣∣
n∑
i=1

f(ci)∆xi − I

∣∣∣∣∣ < ε

whenever ‖∆‖ < δ for all partitions P and all selections C that define the Riemann Sum.

If the limit I exists as a finite number, we say that f is (Riemann) integrable and write

I =

∫ b

a

f(x) dx .

Theorem 5.6.3 If f is continuous on [a, b], then f is (Riemann) integrable and the definite integral

and the Riemann integral have the same value.
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3.6 Volumes of Revolution

One simple application of the Riemann integral is to define the volume of a solid.

Theorem 5.7.1 Suppose that a solid is bounded by the planes with equations x = a and x = b. Let

the cross-sectional area perpendicular to the x-axis at x be given by a continuous function A(x). Then

the volume V of the solid is given by

V =

∫ b

a

A(x) dx .

Theorem 5.7.2 Let f be a function that is continuous on [a, b]. Let R denote the region bounded by

the curves x = a, x = b, y = 0 and y = f(x). Then the volume V obtained by rotating R about the

x-axis is given by

V =

∫ b

a

π(f(x))2 dx .

Theorem 5.7.3 Let f and R be defined as in Theorem 5.7.2. Assume that f(x) > 0 for all x ∈ [a, b],

either a ≥ 0 or b ≤ 0, so that [a, b] does not contain 0. Then the volume V generated by rotating the

region R about the y-axis is given by

V =

∫ b

a

(2πxf(x)) dx .

Example 5.7.2 Consider the region R bounded by y = sinx, y = 0, x = 0 and x = π. Find the volume

generated when R rotated about x-axis

Answer: By Theorem 5.7.2, the volume V is given by

V =

∫ π

0

π sin2 x dx = π ·
[

1

2
(x− sinx cosx)

]π
0

=
π2

2
.

Example 5.7.3 Consider the region R bounded by the circle (x− 4)2 + y2 = 4. Compute the volume

V generated when R is rotated around

(i) y = 0 [32π/3]

(ii) x = 0 [32π2]

[graph]

(i) Since the area crosses the x-axis, it is sufficient to rotate the top half to get the required solid.

V =

∫ 6

2

πy2 dx = π

∫ 6

2

[4− (x− 4)2] dx = π

[
4x− 1

3
(x− 4)3

]6

2

= π

[
16− 8

3
− 8

3

]
=

32

3
π .

This is the volume of a sphere of radius 2.
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3.7 Arc Length and Surface Area

The Riemann integral is useful in computing the length of arcs. Let f and f ′ be continuous on [a, b].

Let C denote the arc

C = {(x, f(x)) : a ≤ x ≤ b}.

Let

P = {a = x0 < x1 < x2 < . . . < xn = b}

be a partition of [a, b]. For each i = 1, 2, . . . , n, let

∆xi = xi − xi−1 , ∆yi = f(xi)− f(xi−1)

∆si =
√

(f(xi)− f(xi−1))2 + (xi − xi−1)2

‖∆‖ = max
1≤i≤n

{∆xn}.

Then ∆si is the length of the line segment joining the two points (xi−1, f(xi−1)) and (xi, f(xi)). Let

A(P ) =
n∑
i=1

∆si.

Then A(P ) is called the polygonal approximation of C with respect to the portion P .

Definition 5.8.1 Let C = {(x, f(x)) : x ∈ [a, b]} where f and f ′ are continuous on [a, b]. Then the arc

length L of the arc C is defined by

L = lim
‖∆‖→0

A(P ) = lim
‖∆‖→0

n∑
i=1

√
(f(xi)− f(xi−1))2 + (xi − xi−1)2.

Theorem 5.8.1 The arc length L defined in Definition 5.8.1 is given by

L =

∫ b

a

√
(f ′(x))2 + 1 dx .

Example 5.8.1 Let C = {(x, coshx) : 0 ≤ x ≤ 2}. Then the arc length L of C is given by

L =

∫ 2

0

√
1 + sinh2 x dx =

∫ 2

0

coshx dx = [sinhx]20 = sinh 2.

Example 5.8.2 Let

C =

{(
x,

2

3
x3/2

)
: 0 ≤ x ≤ 4

}
.

Then the arc length L of the curve C is given by

L =

∫ 4

0

√
1 +

(
2

3
· 3

2
x1/2

)2

dx =

∫ 4

0

(1 + x)1/2 dx =

[
2

3
(1 + x)3/2

]4

0

=
2

3

[
5
√

5− 1
]
.

Definition 5.8.2 Let C be defined as in Definition 5.8.1.
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(i) The surface area Sx generated by rotating C about the x-axis is given by

Sx =

∫ b

a

2π|f(x)|
√

(f ′(x))2 + 1 dx .

(ii) The surface area Sy generated by rotating C about the y-axis

Sy =

∫ b

a

2π|x|
√

(f ′(x))2 + 1 dx .

Example 5.8.3 Let C = {(x, coshx) : 0 ≤ x ≤ 4}.

(i) Then the surface area Sx generated by rotating C around the x-axis is given by

Sx =

∫ 4

0

2π coshx
√

1 + sinh2 x dx = · · · = π[4 + sinh 4 cosh 4].

(ii) The surface area Sy generated by rotating the curve C about the y-axis is given by

Sy =

∫ 4

0

2πx
√

1 + sinh2 x dx = · · · = 2π[x sinhx− coshx]40 = 2π[4 sinh 4− cosh 4 + 1] .

Theorem 5.8.2 Let C = {(x(t), y(t)) : a ≤ t ≤ b}. Suppose that x′(t) and y′(t) are continuous on

[a, b].

(i) The arc length L of C is given by

L =

∫ b

a

√
(x′(t))2 + (y′(t))2 dt .

(ii) The surface area Sx generated by rotating C about the x-axis is given by

Sx =

∫ b

a

2π|y(t)|
√

(x′(t))2 + (y′(t))2 dt .

(iii) The surface area Sy generated by rotating C about the y-axis is given by

Sy =

∫ b

a

2π|x(t)|
√

(x′(t))2 + (y′(t))2 dt .

Example 5.8.4 Let C =
{(
et sin t, et cos t

)
: 0 ≤ t ≤ π/2

}
. Then

ds =
√

(x′(t))2 + (y′(t))2 dt =
√

(et(sin t+ cos t))2 + (et(cos t− sin t))2 dt

= {e2t(sin2 t+ cos2 t+ 2 sin t cos t+ cos2 t+ sin2 t− 2 cos t sin t)}1/2 dt

= et
√

2 dt .
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(i) The arc length L of C is given by

L =

∫ π/2

0

√
2et dt =

√
2
[
et
]π/2

0
=
√

2(eπ/2 − 1) .

(ii) The surface area Sx obtained by rotating C about the x-axis is given by

Sx =

∫ π/2

0

2π(et cos t)(
√

2et dt ) = · · · = 2
√

2π

5
(eπ − 2) .

(iii) The surface area Sy obtained by rotating C about the y-axis is given by

Sy =

∫ π/2

0

2π(et sin t)(
√

2et dt ) = · · · = 2
√

2π

5
(2eπ + 1) .

4 Techniques of Integration

4.1 Integration by Substitution

Theorem 6.2.1 Let f(x), g(x), f(g(x)) and g′(x) be continuous on an interval [a, b]. Suppose that

F ′(u) = f(u) where u = g(x). Then

(i)

∫
f(g(x))g′(x) dx =

∫
f(u) du = F (g(x)) + C

(ii)

∫ b

a

f(g(x))g′(x) dx =

∫ u=g(b)

u=g(a)

f(u) du = F (g(b))− F (g(a)).

4.2 Integration by Parts

Theorem 6.3.1 Let f(x), g(x), f ′(x) and g′(x) be continuous on an interval [a, b]. Then

(i)

∫
f(x)g′(x) dx = f(x)g(x)−

∫
g(x)f ′(x) dx

(ii)

∫ b

a

f(x)g′(x) dx = (f(b)g(b)− f(a)g(a))−
∫ b

a

g(x)f ′(x) dx

(iii)

∫
u dv = uv −

∫
v du .

where u = f(x) and dv = g′(x) dx are the parts of the integrand.

4.3 Integration by Partial Fractions

A polynomial with real coefficients can be factored into a product of powers of linear and quadratic

factors. This fact can be used to integrate rational functions of the form P (x)/Q(x) where P (x) and
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Q(x) are polynomials that have no factors in common. If the degree of P (x) is greater than or equal to

the degree of Q(x), then by long division we can express the rational function by

P (x)

Q(x)
= q(x) +

r(x)

Q(x)

where q(x) is the quotient and r(x) is the remainder whose degree is less than the degree of Q(x). Then

Q(x) is factored as a product of powers of linear and quadratic factors. Finally r(x)/Q(x) is split into

a sum of fractions of the form

A1

ax+ b
+

A2

(ax+ b)2
+ . . .+

An
(ax+ b)n

and
B1x+ C1

ax2 + bx+ c
+

B2x+ C2

(ax2 + bx+ c)2
+ + . . .+

Bmx+ Cm
(ax2 + bx+ c)m

Many calculators and computer algebra systems, such as Maple or Mathematica, are able to factor

polynomials and split rational functions into partial fractions. Once the partial fraction split up is

made, the problem of integrating a rational function is reduced to integration by substitution using

linear or trigonometric substitutions. It is best to study some examples and do some simple problems

by hand.

4.4 Trigonometric substitutions

To integrate ∫
R(sinx, cosx) dx =

∫
P (sinx, cosx)

Q(sinx, cosx)
dx

1. R(−u, v) = −R(u, v) let cosx = t

2. R(u,−v) = −R(u, v) let sinx = t

3. R(−u,−v) = R(u, v) let tg x = t

4. otherwise let tg
x

2
= t

for cosx = t we have

| sinx| =
√

1− t2 , dx =
−1√
1− t2

dt

for sin x = t we have

| cosx| =
√

1− t2 , dx =
1√

1− t2
dt

for tg x = t we have

cosx =
1√

1 + t2
, sinx =

t√
1 + t2

, dx =
1

1 + t2
dt

for tg
x

2
= t we have

cosx = cos2 x

2
− sin2 x

2
=

1− t2

1 + t2
, sinx = 2 sin

x

2
cos

x

2
=

2t

1 + t2
, dx =

2

1 + t2
dt
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5 Differential Calculus of Functions of Several Variables

5.1 Introduction

Definition 6.1.1 Let M 6= ∅. A mapping % : M ×M → [0,∞) is a metric (distance) on M , if for all

x, y, z ∈M we have

1. (x, y) = 0⇔ x = y,

2. (x, y) = (y, x) (symmetry),

3. (x, z) ≤ (x, y) + (y, x) (triangle inequality).

The set M equiped with a metric % is called a metric space (M,%).

Example 6.1.1 The set E1 is a metric space, d(x, y) = |x− y|,
The set En is a metric space. A mapping d : En × En → [0,∞) defined by a formula

d(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2 =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2,

where X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) ∈ En is called an Euclidean metric.

Another exaples of metrices in En:

d(X, Y ) =
n∑
i=1

|xi− yi| = |x1− y1|+ |x2− y2|+ . . .+ |xn− yn| (so called “Postman (Taxicab) metric”)

d(X, Y ) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|} (so called “maximal metric”)

By an Euclidean metric we have also defined a norm on En by

‖X‖ =

√√√√ n∑
i=1

x2
i =

√
x2

1 + x2
2 + . . .+ x2

n = %(X, 0)

Definition 6.1.2

1. A set

Oδ(A) = {X ∈ En : ‖X − A‖ < δ}

is called an open ball centered at A ∈ En with a radius δ > 0.

2. A neighbourhood of a point A ∈ En is an arbitrary set U such that there exists Oδ(A) ⊂ U .

3. A point A ∈ Ω ⊂ En is called an interior point of the set Ω if there is a neighbourhood Oδ(A)

such that Oδ(A) ⊂ Ω.
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4. We call a set Ω ⊂ En an open set if each point x ∈ Ω is an interior point of the set Ω.

5. By an inerior of the set Ω ⊂ En we mean a set of all interior points of the set Ω, we denote it by

a IntΩ.

6. We call a set Ω ⊂ En closed if it is a complement to an open set in En.

7. A point A is a boundary point of the set Ω ⊂ En if for any Oδ(A) we have

Oδ(A) ∩ Ω 6= ∅ and Oδ(A) ∩ (En \ Ω) 6= ∅.

8. A boundary of the set Ω is denoted by ∂Ω.

9. A set Ω ⊂ En is called bounded if there exists Oδ(A) such that Ω ⊂ Oδ(A).

10. A set Ω ⊂ En is called convex if for any couple of the points X, Y ∈ Ω we have

λX + (1− λ)Y ∈ Ω

for any λ ∈ [0, 1].

11. A set Ω ⊂ En is called segment-connected if each couple of points from Ω can be connected by a

curve which lies completely in Ω.

12. A set Ω ⊂ En is called a domain if it is open and segment-connected.

Theorem 6.1.1 Let P be a metric space. Then

(i) ∅ and P are open sets.

(ii) Let {Aα}α∈I be a system of open sets. Then
⋃
α∈I

Aα is open set.

Theorem 6.1.2 A set Ω is open if and only if it is empty or it is a union of open balls.

Corollary 6.1.1 Open balls are open sets.

Definition 6.1.3 Let Ω ⊂ En, Ω 6= ∅. A mapping f : Ω→ E is called a function of n variables on Ω.

Definition 6.1.4 Let Ω ⊂ En, Ω 6= ∅. A vector-valued function of n variables is a mapping f : Ω→ Em,

i.e. f = (f1, f2, . . . , fm).

Definition 6.1.5 We say, that a sequence of points {Xk}k = 0∞ ⊂ En has a limit X ∈ En if

lim
k→∞
‖Xk −X‖ = 0

Remark. Xk = [xk1, x
k
2, . . . , x

k
n], X = [x1, x2, . . . , xn],

lim
k→∞
‖Xk −X‖ = 0 ≡ lim

k→∞
|xkj − xj| = 0 ∀j = 1, 2, . . . , n.
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We will introduce first a notion of a polynomial function of n variables in En:

P (x1, x2, . . . , xn) =

m1∑
k1=0

m2∑
k2=0

· · ·
mn∑
kn=0

ak1k2...knx
k1
1 x

k2
2 . . . xknn ,

where n ∈ N , ak1k2...kn ∈ R, ki, mi are non-negative integers.

Rational function of n variables is then a fraction of two polynomials

R(x1, x2, . . . , xn) =
P (x1, x2, . . . , xn)

Q(x1, x2, . . . , xn)

5.2 Continuity and Limit

5.2.1 Continuity

Definition 6.2.1 (Heine’s definition of continuity) Let M ⊂ D(f) ⊂ En. We call a function f

continuous at the point A ∈M with respect to M if for any sequence {Xk}∞k=0 ⊂M we have

lim
k→∞

Xk = A ⇒ lim
k→∞

f(Xk) = f(A)

Sometimes we write in short

Xk → A ⇒ f(Xk)→ f(A).

We say that a function f is continuous on a set M if it is continuous w.r.t. M at any point x ∈M .

Definition 2. Let M ⊂ D(f) ⊂ En. We say that a vector-valued function f : M → Em is continuous

on the set M if any its coordinate fi, i = 1, 2, . . . ,m, is continuous on M .

Theorem 6.2.1 Let functions f and g are continuous at the point A ∈ Ω ⊂ En. Then also functions

f + g, f − g, f · g, f/g (under the assumption g(A) 6= 0) and |f | are continuous at the point A.

Remark Continuity of f + g, f − g, f · g, f/g and |f | on a set.

Theorem 6.2.2 Let a function g be continuous at the point A ∈ M ⊂ D(g) ⊂ En w.r.t. M ,

g(M) ⊂ N ⊂ Em and a function f : N → E is continuous at the point B = g(A) w.r.t. N . Then a

composition h = f ◦ g is continuous at the point A w.r.t. M .

5.2.2 Limit

Let us define E := E ∪ {±∞}.
Definition 3. Let Ω ⊂ En. We say that a point A ∈ En is a touching point (an accumulation point)

of a set Ω if for any ball Bδ(A) we have

Bδ(A) ∩ (Ω \ {A}) = ∅.

Definition 4. Let Ω ⊂ En, X0 ∈ En be a touching point of a set Ω and f : Ω \ {X0} → E be a

given function. We say that L ∈ E is a limit of the function f at the point X0 if for any sequence
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{Xk}∞k=1 ⊂ Ω \ {X0} we have

limXk = X0 ⇒ lim
k→∞

f(Xk) = L.

We write

lim
X∈Ω,X→X0

f(X) = L.

Theorem 6.2.3 Let Ω ⊂ En and a point X0 ∈ En be an accumulation point of the set Ω. Letf, g :

Ω→ E be given functions. Let us assume that the limits

lim
X∈Ω,X→X0

f(X), lim
X∈Ω,X→X0

g(X)

exist. Then also the limits

lim
X∈Ω,X→X0

(f(X)± g(X)) = lim
X∈Ω,X→X0

f(X)± lim
X∈Ω,X→X0

g(X),

lim
X∈Ω,X→X0

(f(X)g(X)) = lim
X∈Ω,X→X0

f(X) lim
X∈Ω,X→X0

g(X),

lim
X∈Ω,X→X0

f(X)

g(X)
=

limX∈Ω,X→X0 f(X)

limX∈Ω,X→X0 g(X)

exist if the expressions have sence.

Theorem 6.2.4 Let Ω ⊂ En, let a point X0 ∈ En be an accumulation point of the set Ω and let

f, g : Ω→ E, f : g(Ω)→ E be given functions. Let the point g(X0) ∈ En be an accumulation point of

the set g(Ω). Let us assume that

lim
Y ∈g(Ω),Y→Y0

f(Y ) = L

lim
X∈Ω,X→X

g(X) = Y0,

g(X0) = Y0 or g(X) 6= Y0 ∀X ∈ Ω, X 6= X0.

Then

lim
X∈Ω,X→X0

f(g(X)) = L

Definition 5. Let Ω ⊂ D(f) ⊂ En. We say that a vector valued function f : Ω → Em, f =

(f1, f2, . . . , fm), has a limit at the point X0 ∈ En, if each its component fi, i = 1, 2, . . . ,m, has a limit

Li ∈ E, i = 1, 2, . . . ,m, in the point X0 in the sense of Definition 4.

5.3 Directional derivative, partial derivative, total differential

5.3.1 Directional derivative

Let us denote

ϕu(t) := f(A+ tu)
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for A = [a1, a2, . . . , an] ∈ En, u = (u1, u2, . . . , un) ∈ Rn and t ∈ R.

Definition 1. Let f be defined on a neighbourhood Uδ(A) of the point A ∈ En and let u ∈ R be a

vector. If the limit

lim
t→0

f(A+ tu)− f(A)

t
= lim

t→0

ϕu(t)− ϕu(0)

t

exists and is finite, then we say, that function f has at the point A (directional) derivative in the

direction u, i.e. ϕu is differentiable at 0.

Number ϕ′(0) is called a derivative of the function f at the point A in the direction u. Directional

derivative is denoted by

∂f(A)

∂u
, Duf(A), duf(A), fu(A), ∂uf(A).

5.3.2 Partial derivative

Definition 2. Let f be defined on a neighbourhood Uδ(A) of the point A = [a1, a2, . . . , an] ∈ En and

let e1, e2, . . . , en ∈ Rn be vectors such that

e1 = (1, 0, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),
...

en = (0, 0, . . . , 0, 1).

If there is a derivative in the direction ei (i = 1, 2, . . . , n), i.e. the limit

lim
t→0

f(A+ tei)− f(A)

t

exists and is finite, then we say, that f has at the point A a partial derivative with respect to xi.

Partial derivative is denoted by

∂f(A)

∂xi
, Dif(A), dif(A), fxi(A), ∂xif(A).

If ∂xif(A) exists for all i = 1, 2, . . . , n, then we say that f is differentiable at A.

Theorem 6.3.1 Let f and g be given functions of X = [x1, x2, . . . , xn] ∈ En. Then

∂xi(f(X)± g(X)) = ∂xif(X)± ∂xig(X),

∂xi(f(X) · g(X)) = ∂xif(X)g(X) + f(X)∂xig(X),

∂xi

(
f(X)

g(X)

)
=
∂xif(X)g(X)− f(X)∂xig(X)

g2(X)
,

i = 1, 2, . . . , n, at any point X at which the right hand side has a sense.

Let f be a scalar function of one variable and g be a function of X = [x1, x2, . . . , xn] ∈ En. Then

∂xi(f(g(X))) = f ′(g(X))∂xig(X), i = 1, 2, . . . , n,
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at any point X at which the right hand side has a sense.

Remark: A set of all functions defined on an open set Ω ⊂ En for which ∂xif ∈ C(Ω) for all

i = 1, 2, . . . , n we denote by C1(Ω).

Remark: Partial derivative of the second order are denoted by

∂2f(A)

∂x2
i

,
∂2f(A)

∂xi∂xj
, Dijf(A), dijf(A), fxixj(A), ∂2

xixj
f(A) = ∂xi∂xjf(A).

Remark: A set of all functions defined on an open set Ω ⊂ En for which ∂xif ∈ C(Ω) for alli =

1, 2, . . . , n and ∂xi∂xjf ∈ C(Ω) for all i, j = 1, 2, . . . , n we denote by C2(Ω).

Theorem 6.3.2 (Schwartz) Let Ω ⊂ E2 be open and A = [x0, y0] ∈ Ω. If both second partial

derivatives

∂x∂yf, ∂y∂xf

exist in a certain neighbourhood of the point A and are continuous then

∂x∂yf(A) = ∂y∂xf(A).

5.3.3 (Total) Differential

Theorem 6.3.3 (Riesz Theorem) Let Vn be a space with a scalar product. For any linear functional

L ∈ V ′n (V ′n is a dual space to Vn, L : Vn → R, L is linear and continuous) there exists a unique vector

xL ∈ Vn such that

L(h) = (xL|h) ∀h ∈ Vn.

Definition 3. Let f be a function on Ω ⊂ D(f) ⊂ En and let a point A ∈ Ω be and interior point

of the set Ω. e say that a function f is differentiable at the point A if there exists a linear mapping

L : Rn → R (it depends on the point A) such that

lim
h→0

|f(A+ h)− f(A)− L(h)|
‖h‖

= 0.

Then we call the linear mapping L as a (total) differential (or a tangent mapping) of the function f at

the point A.

We say, that the function f is differentiable on Ω if it is differentiable at any point A ∈ Ω.

Remark: (Total) differential is denoted by

L = dfA = df(A).

5.3.4 Gradient

To the diferential of a function f at the point A there is (via a Riesz Representation Theorem) associated

a unique vector ∇f(A) = grad f(A) from the space Rn (which is called a gradient of the function f at

the point A).
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We can write

dfA(h) = (∇f(A)|h) ∀h ∈ Rn.

Remark:

ker dfA = (∇f(A))⊥.

Theorem 6.3.4 Let a function f : Ω → E, Ω ⊂ En and let A be an interior point of Ω. If f is

diferentiable at the point A then

(i) f is continuous at A,

(ii) f has a directional derivative in any direction u ∈ Rn and

∂uf(A) =
∂f

∂u
(A) = dfA(u) ∀u ∈ Rn.

Corollary 6.3.1 Let the assumptions of the previous Theorem are fulfilled. Then

(i) dfA : u 7→ ∂uf(A) is a linear mapping,

(ii) if total differential dfA exists, then it is unique.

Theorem 6.3.5 Let a function f : Bδ(A)→ E, Bδ(A) ⊂ En. Let us assume that all partial derivatives

of the first order exist in any point of Bδ(A) and are continuous at A. Then f is differentiable at the

point A.

Cauchy inequality ∣∣∣∣∂f∂h(A)

∣∣∣∣ = |(∇f(A)|h)| ≤ ‖h‖‖∇f(A)‖

and if ∇f(A) 6= o then the equality in the above expression holds if and only if h = c∇f(A) for some

c ∈ R, c 6= 0.

Theorem 6.3.1 Let a function f : Ω → E, Ω ⊂ En and A be an interior point of Ω. Let us assume

that f is differentiable at the point A and ∇f(A) 6= o. Then the direction of the highest decay of the

function f at the point A among all possible directions h ∈ Rn with ‖h‖ = 1 is

h =
∇f(A)

‖∇f(A)‖
.

5.3.5 Jacobi matrix

If f if differerentiable at the point A, then we define a matrix

Df(A) =

(
∂f

∂x1

(A),
∂f

∂x2

(A), · · · , ∂f
∂xn

(A)

)
which is called Jacobi matrix of the function f at the point A.
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Since h =
n∑
i=1

hiei, we have due to linearity of dfA that

dfA(h) =
n∑
i=1

hi dfA(ei) =
n∑
i=1

hi
∂f

∂xi
(A) = Df(A)hT .

Theorem 6.3.6 Let f, g : En → E are two differentiabla mappings at the interior point A of the set

Ω ⊂ En. Then

D(f ± g)(A) = Df(A)±Dg(A),

D(f · g)(A) = Df(A)g(A) + f(A)Dg(A),

D

(
f

g

)
(A) =

Df(A)g(A)− f(A)Dg(A)

g2(A)
, g(A) 6= 0

5.3.6 Tangent plane

A graph of a function f : Ω→ E, Ω ⊂ En is a subset of En+1 defined by

Grf = {[X, y] ∈ En × E : X ∈ Ω, y = f(X)}.

A tangent plane to the graph of f at the point A is a set

{[X, y] ∈ En × E : y = f(A) + (∇f(A)|(X − A))}.

For n = 1, A = a ∈ R we have a tangent line

y = f(a) + f ′(a)(x− a)

For n = 2, A = [a, b] ∈ R2 we have a tangent plane

z = f(a, b) + ∂xf(a, b)(x− a) + ∂yf(a, b)(y − b) = f(a, b) + dfA((x− a, y − b))

5.3.7 Essential Theorems of Differential Calculus

Theorem 6.3.7 (Mean Value Theorem) Let a function f : Ω → E, Ω ⊂ En be an open set and

the function f has directional derivative in all directions at any point of the set Ω. Let us assume that

A,X ∈ Ω are such that a segment AX ⊂ Ω and let h = X − A. Then the function g(t) := f(A + th),

t ∈ [0, 1] is defined and differentiable on [0, 1] and we have

g′(t) =
∂f

∂h
(A+ th), t ∈ [0, 1]

Moreover,
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(i) There exists ξ ∈ (0, 1) such that

f(A+ h)− f(A) = g(1)− g(0) =
∂f

∂h
(A+ ξh)

(ii) If g is continuous on [0, 1] then

f(A+ h)− f(A) =

∫ 1

0

∂f

∂h
(A+ th) dt .

Theorem 6.3.8 (Weierstrass Theorem, Extreme Value Theorem) A function which is continuous

on a compact (hence closed and bounded) set Ω ⊂ En attains both its maximum and a minimum on Ω.

Remark: There are points M,N ∈ Ω such that

f(M) = min
x∈Ω

f(x), f(N) = max
x∈Ω

f(x).

5.4 Taylor Theorem

Taylor formula for a function F ∈ Ck+1((t0 − δ, t0 + δ)), δ > 0:

F (t) = Tk(t) +Rk(t)

= F (t0) + F ′(t0)(t− t0) +
1

2!
F ′′(t0)(t− t0)2 + . . .+

1

k!
F (k)(t0)(t− t0)k +

1

(k + 1)!
F (k+1)(ξ)(t− t0)k+1

for any t ∈ (t0 − δ, t0 + δ) and some ξ inbetween t a t0.

Theorem 6.4.1 (Taylor formula with a Lagrange form of the remainder) Let us have a function

f ∈ C2(Ω) or f ∈ C3(Ω), respectively, Ω ⊂ En. Let Uδ(A) ⊂ Ω be a neighbourhood of the point

A = [a1, a2, . . . , an] ∈ Ω. Then for any vector u = (h1, h2, . . . , hn) ∈ Rn with A+ u ∈ Uδ(A) we have

f(A+ u) = T1(u) +R1(u) = f(A) + (∇f(A)|u) +
1

2!
Hf (A+ ξu)uT |u)

for some ξ ∈ (0, 1) or

f(A+ u) = T2(u) +R2(u) = f(A) + (∇f(A)|u) +
1

2!
Hf (A)uT |u) +R2(u),

where R1(u) or R2(u) is the rest and

lim
‖u‖→0

R1(u)

‖u‖
= 0 or lim

‖u‖→0

R1(u)

‖u‖2
= 0,

respectively.
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5.5 Extremal Points

5.5.1 Introduction

Definition 6.5.1

By a quadratic form on the space En we call a function

K(x) = K(x1, . . . , xn) =
n∑

i,j=1

aijxixj.

We call a quadratic form K

• positive definite if K(x) > 0 ∀x ∈ En, x 6= o,

• positively semidefinite if K(x) ≥ 0 ∀x ∈ En,

• negative definite if K(x) < 0 ∀x ∈ En, x 6= o,

• negative semidefinite if K(x) ≤ 0 ∀x ∈ En,

• indefinite if there exist x, y ∈ En such that K(x) > 0 and K(y) < 0.

Remark: Let us denote

D =


a11 a12 . . . a1k

a21 a22 . . . a2k

. . . . . . . . . . . .

ak1 ak2 . . . akk


for k = 1, . . . , n.

Theorem 6.5.1 (Sylvester criterion) Quadratic form K is

(a) positive definite if and only if detDk > 0 for all k = 1, . . . , n,

(b) negative definite if and only if (−1)k detDk > 0 for all k = 1, . . . , n,

(c) if detDn 6= 0 and the form K is not definite then K is indefinite.

Theorem 6.5.2 (Sylvester criterion for n = 2) Let A = D2. Quadratic form K is

(a) positive definite if and only if a11 > 0 and detA > 0,

(b) negative definite if and only if a11 < 0 and detA > 0,

(c) if detA 6= 0 and the form K is not definite then K is indefinite.
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5.5.2 Local extrema

Let Ω ⊂ En and f : Ω→ E be a given function. A point A ∈ Ω such that

f(A) ≤ f(X) ∀X ∈ Ω

is called a point of minima (an absolute minimum) of the function f on the set Ω.

Definition 6.5.2 We say that a function f(X) has at the point A ∈ Ω ⊂ D(f) a local minimum (local

maximum) w.r.t. Ω, if there exists a neighbourhood Uδ(A) such that

f(X) ≤ f(A) (f(X) ≥ f(A))

for all X ∈ Uδ(A) ∩ Ω.

The points local minima (local maxima) are called extremal points and values of the function f evaluated

at these extremal points are called extremal values.

Theorem 6.5.3 If for at least one index 1 ≤ j ≤ n the partial derivative ∂xjf(A) exists and is non-zero

then the function f has no local extrema at the point A.

Theorem 6.5.4 A function f can have sharp local extremal points at most in a countable set.

Theorem 6.5.5 Let a function f : Ω → E be diferentiable at the interior point A ∈ Ω. If A is an

extremal point of the function f then

dfA = 0 (or equivalently ∇f(A) = o)

Definition 6.5.3 Let Ω be open sobset of En and let f : Ω→ E be diferentiable in Ω.

The points A ∈ Ω such that

dfA = 0 (or equivalently ∇f(A) = o)

are called critical points (stationary points) of the function f in Ω.

Theorem 6.5.6 Let us have a function f ∈ C2(Ω), Ω ⊂ En be open in En and let A ∈ Ω be a critical

point of the function f . Let Hf (A) be a matrix of second partial derivatives of f evaluated at the point

A, i.e.

Hf (A) =

(
∂xxf(A) ∂y∂xf(A)

∂x∂yf(A) ∂yyf(A)

)
.

Then

(i) if A is a local minimum then the quadratic form corresponding to Hf (A) is positively semidefinite,

i.e.

(Hf (A)uT |u) ≥ 0 ∀u ∈ Rn,

36



(ii) if the quadratic form corresponding to Hf (A) is positively definite, i.e.

(Hf (A)uT |u) > 0, ∀u ∈ Rn, u 6= o

then A is a isolated local minimum,

(iii) if (Hf (A)uT |u) is indefinte then there is no extremal value at the point A.

Remark. If we switch signs in (i) and (ii) we obtain the corresponding assertion about local maximum.

Remark. Let us recall that if A is extremal point of f ∈ C2(Ω) then ∇f(A) = o by Theorem 6.5.5

and the scalar products in the assertion above are up to the constant 1/2 the next terms in Taylor

expansion, (see Theorem 6.4.1) which in (i) can decide, in (ii) must decide and in (iii) cannot decide

about the type of extremal point A.

5.5.3 Global extremal points

Usually we look for the largest (smallest) value of a given function on the set Ω. If the set Ω is compact

then it follows from Weierstrass Theorem that there is min f(Ω) and max f(Ω). Global (absolute)

extremal points on the set Ω we obtain by inspection of the points

(1) boundary points of the set Ω,

(2) stationary points of IntΩ,

(3) points in IntΩ where some of the (partial) derivatives does not exist.
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